Numerical and experimental analysis of oxygen transfer in bubble columns: Assessment of predicting the oxygen-transfer rate in clean water and with surfactant solutions

肺表面活性物质 气泡 传质 传质系数 化学 扩散 体积流量 流体体积法 极限氧浓度 热力学 曝气 氧气 机械 分析化学(期刊) 色谱法 流量(数学) 物理 生物化学 有机化学
作者
Kamal Rezk,Фредрик Андерссон,Maria Sandberg,Wamei Lin
标识
DOI:10.1016/j.eti.2023.103522
摘要

The purpose of this study was to develop a numerical model to estimate the oxygen-transfer rate for a laboratory-scale bottom aeration system at a 1.28 L reactor volume and to contribute to fundamental knowledge regarding the oxygenation of surfactant solutions. The primary goal of the study has been to develop a computational fluid dynamics (CFD) model using Euler–Euler (EE) mixture model coupled with the advection-diffusion equation to predict the oxygen-transfer rate in bubble columns containing clean water. The secondary goal has been to apply the model to water-based solutions containing the surfactant lauric acid (DDA) to identify options for further development of the model to make it applicable to surfactant solution systems. The Sauter mean diameter (SMD) was calculated to represent the average bubble diameter, based on available experimental data for different combinations of superficial velocities rate and DDA concentration. The oxygen-transfer rate in clean water fit well with experimental data at lower superficial velocities, and the differences in volumetric mass-transfer coefficients were 0.7% and 3.3% for superficial velocities of 0.24 cm/s and 0.48 cm/s, respectively. Because the flow regime is more heterogeneous at higher superficial velocities, the model tends to overestimate the oxygen-transfer rate. For surfactant solutions, the model overestimates the oxygen-transfer rate due to surfactant adsorption at the bubble/water interface and the consequent decrease in the mass-transfer coefficient not being modeled. A correction factor for the mass-transfer coefficient based on a larger sample size of experimental data may need to be calculated and applied to improve model predictability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助曼尼采纳,获得10
1秒前
飞羽发布了新的文献求助10
1秒前
科研通AI2S应助song99采纳,获得10
1秒前
momi完成签到 ,获得积分10
1秒前
哈哈哈呢完成签到 ,获得积分20
1秒前
LiShin发布了新的文献求助10
1秒前
phylicia发布了新的文献求助10
2秒前
萝卜完成签到,获得积分10
2秒前
2秒前
sjj完成签到,获得积分10
3秒前
只道寻常发布了新的文献求助10
3秒前
灵巧坤完成签到,获得积分20
4秒前
澹台灭明完成签到,获得积分10
4秒前
含蓄的鹤发布了新的文献求助10
4秒前
K. G.完成签到,获得积分0
4秒前
张云雷的大闸蟹完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
化学狗完成签到,获得积分10
6秒前
yud完成签到 ,获得积分10
6秒前
7秒前
拼搏思卉发布了新的文献求助10
7秒前
8秒前
雨碎寒江完成签到,获得积分10
8秒前
9秒前
会飞的木头完成签到,获得积分10
9秒前
雪白涵山发布了新的文献求助20
9秒前
shouyu29应助MADKAI采纳,获得10
9秒前
Seiswan发布了新的文献求助10
9秒前
小小菜鸟完成签到,获得积分10
10秒前
10秒前
西西弗斯完成签到,获得积分10
10秒前
KT2440完成签到,获得积分10
11秒前
顾阿秀发布了新的文献求助10
11秒前
11秒前
11秒前
gnr2000完成签到,获得积分0
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762