Contrastive Learning-based Multi-behavior Recommendation with Semantic Knowledge Enhancement

计算机科学 自然语言处理 人工智能 情报检索 知识管理
作者
Wang Yu,Chenzhong Bin,Wenqiang Liu,Liang Chang
标识
DOI:10.1109/icdm58522.2023.00200
摘要

Recently, multi-behavior recommendation has become a hot topic in the field of recommendation systems. Yet, existing methods still face challenges in effectively representing multi-behavior semantic information from the following perspectives: (i) Previous works’ heavy reliance on a unified embedding for modeling all behavior interaction graphs hindered accuratemining of fine-grained user preference semantics across multiple behaviors. (ii) Existing multi-behavior contrastive learning (CL) tasks fail to capture the dependency of user preferring to items under different behaviors, thereby constrains the model’s ability in characterizing the personalized features of users/items. (iii) The rich semantic information in the knowledge graph is not fully leveraged. To address the above challenges, we design a Contrastive Learning-based Multi-behavior Recommendation with Semantic Knowledge Enhancement (CLMRS) framework, which consists of two encoding modules with CL tasks and a joint learning module. Specifically, in the multi-behavior meta-network encoding module, we propose a novel behavior-supervised graph convolutional encoder to fully mine the user preference semantics in each behavior. Meanwhile, in the semantic knowledge enhanced encoding module, we use a knowledge graph to provide more robust embeddings for items. Finally, we integrate the user/item embeddings learned by the two encoding modules into a comprehensive semantic vector through the joint learning module, which is used for the final prediction of potential users. Extensive experiments on four real-world datasets indicate that CLMRS consistently outperforms various state-of-the-art recommendation methods. Our model code is available at https://github.com/yuwenxuan3197/CLMRS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元羞花发布了新的文献求助10
刚刚
1秒前
vsvsgo发布了新的文献求助10
2秒前
张翀发布了新的文献求助10
2秒前
勤奋紊发布了新的文献求助10
3秒前
3秒前
华仔应助tsuki采纳,获得10
3秒前
3秒前
zkk完成签到,获得积分10
4秒前
laura完成签到,获得积分10
4秒前
鳗鱼思松完成签到,获得积分10
4秒前
4秒前
Potato123123发布了新的文献求助10
5秒前
陈可发布了新的文献求助10
5秒前
6秒前
6秒前
liangwang发布了新的文献求助10
7秒前
华仔应助687采纳,获得10
7秒前
小二郎应助JC采纳,获得10
7秒前
化学兔子发布了新的文献求助10
7秒前
mm完成签到 ,获得积分10
8秒前
上官若男应助月亮睡啦采纳,获得10
8秒前
所所应助Kikisman采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
希望天下0贩的0应助尧尧采纳,获得10
9秒前
9秒前
10秒前
10秒前
淡定的愫完成签到,获得积分10
10秒前
清新的柏柳应助serendipity采纳,获得10
11秒前
Echo发布了新的文献求助30
12秒前
zzy完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
自由面包发布了新的文献求助10
16秒前
luck完成签到,获得积分10
16秒前
16秒前
小巧的归尘完成签到,获得积分20
17秒前
HOAN应助农艳宁采纳,获得80
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770783
求助须知:如何正确求助?哪些是违规求助? 5587536
关于积分的说明 15425401
捐赠科研通 4904207
什么是DOI,文献DOI怎么找? 2638601
邀请新用户注册赠送积分活动 1586484
关于科研通互助平台的介绍 1541557