Contrastive Learning-based Multi-behavior Recommendation with Semantic Knowledge Enhancement

计算机科学 自然语言处理 人工智能 情报检索 知识管理
作者
Wang Yu,Chenzhong Bin,Wenqiang Liu,Liang Chang
标识
DOI:10.1109/icdm58522.2023.00200
摘要

Recently, multi-behavior recommendation has become a hot topic in the field of recommendation systems. Yet, existing methods still face challenges in effectively representing multi-behavior semantic information from the following perspectives: (i) Previous works’ heavy reliance on a unified embedding for modeling all behavior interaction graphs hindered accuratemining of fine-grained user preference semantics across multiple behaviors. (ii) Existing multi-behavior contrastive learning (CL) tasks fail to capture the dependency of user preferring to items under different behaviors, thereby constrains the model’s ability in characterizing the personalized features of users/items. (iii) The rich semantic information in the knowledge graph is not fully leveraged. To address the above challenges, we design a Contrastive Learning-based Multi-behavior Recommendation with Semantic Knowledge Enhancement (CLMRS) framework, which consists of two encoding modules with CL tasks and a joint learning module. Specifically, in the multi-behavior meta-network encoding module, we propose a novel behavior-supervised graph convolutional encoder to fully mine the user preference semantics in each behavior. Meanwhile, in the semantic knowledge enhanced encoding module, we use a knowledge graph to provide more robust embeddings for items. Finally, we integrate the user/item embeddings learned by the two encoding modules into a comprehensive semantic vector through the joint learning module, which is used for the final prediction of potential users. Extensive experiments on four real-world datasets indicate that CLMRS consistently outperforms various state-of-the-art recommendation methods. Our model code is available at https://github.com/yuwenxuan3197/CLMRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
iNk应助多多采纳,获得50
1秒前
香蕉觅云应助进取拼搏采纳,获得10
2秒前
马楼完成签到,获得积分10
2秒前
vicky完成签到,获得积分10
3秒前
阿九发布了新的文献求助10
3秒前
FashionBoy应助mmj采纳,获得10
4秒前
4秒前
5秒前
马楼发布了新的文献求助10
6秒前
6秒前
羊羊羊发布了新的文献求助10
6秒前
6秒前
领导范儿应助开整吧采纳,获得80
7秒前
华仔应助聪明胡图图采纳,获得10
8秒前
上官若男应助cheng采纳,获得10
8秒前
vicky发布了新的文献求助10
10秒前
10秒前
流光发布了新的文献求助10
10秒前
zzzzzzzzzzzzzzzz完成签到,获得积分10
10秒前
李李完成签到,获得积分20
11秒前
11秒前
善学以致用应助ZXB采纳,获得30
12秒前
12秒前
12秒前
李健的粉丝团团长应助23lk采纳,获得10
13秒前
英姑应助23lk采纳,获得10
13秒前
隐形曼青应助23lk采纳,获得10
13秒前
Hello应助23lk采纳,获得10
13秒前
小二郎应助23lk采纳,获得10
13秒前
田様应助23lk采纳,获得10
13秒前
爆米花应助23lk采纳,获得10
13秒前
慕青应助23lk采纳,获得10
13秒前
领导范儿应助23lk采纳,获得10
13秒前
万能图书馆应助23lk采纳,获得10
13秒前
power完成签到,获得积分10
14秒前
852应助草莓糖葫芦采纳,获得10
15秒前
16秒前
充电宝应助机灵浩天采纳,获得10
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143