Enhancing flow boiling using a microchannel with pillar–cavity mixed structures: A lattice Boltzmann study

物理 微通道 格子Boltzmann方法 支柱 沸腾 机械 流量(数学) 流动沸腾 统计物理学 热力学 核沸腾 传热 机械工程 传热系数 工程类
作者
Чен Жен,Qing Li,Wanxin Li,Xuezhen Sun
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2)
标识
DOI:10.1063/5.0192403
摘要

Enhancement of flow boiling in microchannels through adjusting surface structures has attracted much attention in recent years. However, most of the existing studies focus on homogeneous surface structures. In the present study, a novel vertical microchannel with pillar–cavity mixed structures is conceived to enhance flow boiling heat transfer. In the mixed microchannel, cavities and pillars are distributed on the vertical sidewalls of the upstream and downstream flow channel, respectively. A multicomponent phase-change lattice Boltzmann model is employed to investigate the flow boiling performance of the mixed microchannel. Numerical results show that the cavities in the mixed microchannel can supply effective nucleation sites for timely departure of bubbles, while the pillars in the mixed microchannel can suppress the expansion of the vapor film from the outlet toward the inlet. Moreover, the bubbles from the upstream cavities can entrain the cold liquid to disrupt the vapor film covering the downstream pillars for the rewetting of the heated surface. As a result, the flow boiling performance can be significantly enhanced by the synergistic effect of the pillar and cavity structures, and the best flow boiling performance can be achieved by controlling the ratio of the number of cavities to the total number of structures in the mixed microchannel to optimize the synergistic effect. The influences of the structural parameters of pillars and cavities on the flow boiling performance have also been studied. It is found that the height of the pillars and the depth of the cavities have important influences on the flow boiling performance, while the boiling performance is not sensitive to the width of the pillars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笨笨的弱发布了新的文献求助10
刚刚
HHKY完成签到,获得积分10
1秒前
稳重的菠萝完成签到,获得积分10
1秒前
张泽轩发布了新的文献求助10
2秒前
核桃发布了新的文献求助10
3秒前
爆米花应助任性的睫毛采纳,获得10
4秒前
kk完成签到,获得积分10
5秒前
my发布了新的文献求助10
6秒前
希望天下0贩的0应助官官采纳,获得10
6秒前
王汉堡完成签到,获得积分10
6秒前
undertaker发布了新的文献求助10
6秒前
8秒前
Jasper应助笨笨的弱采纳,获得10
8秒前
高挑的未来完成签到 ,获得积分10
9秒前
9秒前
11秒前
13秒前
水水加油发布了新的文献求助10
13秒前
核桃发布了新的文献求助10
15秒前
Guochunbao完成签到,获得积分10
15秒前
16秒前
生动的丝应助zz采纳,获得10
16秒前
17秒前
123发布了新的文献求助10
17秒前
17秒前
18秒前
20秒前
shang发布了新的文献求助10
21秒前
my发布了新的文献求助10
21秒前
能HJY发布了新的文献求助30
22秒前
善学以致用应助鱼叔采纳,获得10
22秒前
核桃发布了新的文献求助10
23秒前
24秒前
Flow3ry完成签到,获得积分10
25秒前
HugginBearOuO发布了新的文献求助10
26秒前
undertaker完成签到,获得积分10
27秒前
28秒前
大个应助欢喜烧鹅采纳,获得10
30秒前
哭泣觅儿发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548