A novel method for detection of internal quality of walnut kernels using low-field magnetic resonance imaging

核(代数) 人工智能 磁共振成像 随机森林 机器学习 数学 计算机科学 模式识别(心理学) 医学 放射科 组合数学
作者
Zhengjun Qiu,Yongliang Bian,Fanyue Wang,Ting Huang,Zhiping Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108546-108546 被引量:2
标识
DOI:10.1016/j.compag.2023.108546
摘要

This study presents a novel non-destructive method for assessing walnut internal quality using Low-Field Magnetic Resonance Imaging (LF-MRI) and radiomics technology. Due to the hard shell of walnuts, determining their interior quality is challenging. By analyzing walnut kernel Low-Field Nuclear Magnetic Resonance (LF-NMR) relaxation curve characteristics and LF-MRI imaging, radiomics techniques were employed to extract, select, and reduce the dimensionality of features from MRI images. Ten significant features strongly correlated with walnut kernel rancidity were identified, and machine learning models were built using six optimized classification algorithms. The Random Forest (RF) models achieved impressive performance with a test accuracy of 93.52%, test recall scores of 92.78%, and test F1 scores of 96.81%. Additionally, the RF model demonstrated a higher net benefit within the threshold probability range of 0.02 to 0.98, as indicated by the DCA curve. The study's findings have significant implications for the walnut industry and food quality control, providing a reliable and efficient means of detecting and identifying walnut kernel rancidity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Wcy发布了新的文献求助10
3秒前
3秒前
七个娃娃发布了新的文献求助10
5秒前
5秒前
宓觅波发布了新的文献求助10
7秒前
QxQMDR完成签到,获得积分10
8秒前
111完成签到,获得积分10
12秒前
标致山兰完成签到,获得积分20
15秒前
111发布了新的文献求助10
16秒前
wxl完成签到,获得积分20
17秒前
17秒前
18秒前
wxl发布了新的文献求助10
20秒前
辰扞发布了新的文献求助10
23秒前
badyoungboy关注了科研通微信公众号
23秒前
23秒前
青檀完成签到,获得积分20
24秒前
26秒前
青檀发布了新的文献求助10
27秒前
29秒前
小二郎应助wxl采纳,获得10
29秒前
寻雾启事完成签到,获得积分10
29秒前
31秒前
乱醉应助忧郁绝音采纳,获得10
32秒前
ccc完成签到,获得积分20
33秒前
Pxn1bplus发布了新的文献求助10
34秒前
36秒前
科研通AI2S应助浚稚采纳,获得10
37秒前
Endlessway应助浚稚采纳,获得20
37秒前
鲤鱼访天应助aqing采纳,获得30
37秒前
11发布了新的文献求助10
37秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
40秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
40秒前
monere应助慈祥的翠桃采纳,获得10
40秒前
CodeCraft应助慈祥的翠桃采纳,获得10
40秒前
深情安青应助慈祥的翠桃采纳,获得10
40秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
40秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
40秒前
Hello应助123456采纳,获得10
40秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240875
求助须知:如何正确求助?哪些是违规求助? 2885573
关于积分的说明 8239275
捐赠科研通 2554021
什么是DOI,文献DOI怎么找? 1382130
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097