亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CycPeptMP: Enhancing Membrane Permeability Prediction of Cyclic Peptides with Multi-Level Molecular Features and Data Augmentation

环肽 膜透性 磁导率 生物系统 数量结构-活动关系 分子描述符 计算机科学 化学 材料科学 生物物理学 机器学习 生物化学 生物
作者
Jianan Li,Keisuke Yanagisawa,Yutaka Akiyama
标识
DOI:10.1101/2023.12.25.573282
摘要

Cyclic peptides are versatile therapeutic agents with many excellent properties, such as high binding affinity, minimal toxicity, and the potential to engage challenging protein targets. However, the pharmaceutical utilities of cyclic peptides are limited by their low membrane permeability—an essential indicator of oral bioavailability and intracellular targeting. Current machine learning-based models of cyclic peptide permeability show variable performance due to the limitations of experimental data. Furthermore, these methods use features derived from the whole molecule which are used to predict small molecules and ignore the unique structural properties of cyclic peptides. This study presents CycPeptMP: an accurate and efficient method for predicting the membrane permeability of cyclic peptides. We designed features for cyclic peptides at the atom-, monomer-, and peptide-levels, and seamlessly integrated these into a fusion model using state-of-the-art deep learning technology. Using the latest data, we applied various data augmentation techniques to enhance model training efficiency. The fusion model exhibited excellent prediction performance, with root mean squared error of 0.503 and correlation coefficient of 0.883. Ablation studies demonstrated that all feature levels were essential for predicting membrane permeability and confirmed the effectiveness of augmentation to improve prediction accuracy. A comparison with a molecular dynamics-based method showed that CycPeptMP accurately predicted the peptide permeability, which is otherwise difficult to predict using simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟嘟嘟发布了新的文献求助30
1秒前
poki完成签到 ,获得积分10
1秒前
21秒前
50秒前
shhoing应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
有机盐应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
Yini应助科研通管家采纳,获得40
1分钟前
Lin.隽发布了新的文献求助10
1分钟前
CMCM应助青柳雅春采纳,获得20
1分钟前
Lin.隽完成签到,获得积分10
1分钟前
1分钟前
2分钟前
清秀的怀蕊完成签到 ,获得积分10
3分钟前
小手冰凉完成签到,获得积分10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
3分钟前
66完成签到 ,获得积分10
3分钟前
BowieHuang应助达不溜搽采纳,获得10
3分钟前
4分钟前
飞天大南瓜完成签到,获得积分10
4分钟前
moon完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
天天完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
李爱国应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
5分钟前
xiaoxinbaba发布了新的文献求助10
6分钟前
科研通AI6应助xiaoxinbaba采纳,获得10
6分钟前
6分钟前
一道光发布了新的文献求助30
6分钟前
大喜喜发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561501
求助须知:如何正确求助?哪些是违规求助? 4646614
关于积分的说明 14678693
捐赠科研通 4587904
什么是DOI,文献DOI怎么找? 2517244
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461520