Prediction of biomarkers associated with membranous nephropathy: Bioinformatic analysis and experimental validation

接收机工作特性 基因 微阵列分析技术 免疫系统 生物 计算生物学 发病机制 Lasso(编程语言) 基因表达谱 基因表达 免疫学 遗传学 医学 计算机科学 内科学 万维网
作者
Miaoru Han,Yi Wang,Xiaoyan Huang,Ping Li,Wenjun Shan,Haowen Gu,Houchun Wang,Qinghua Zhang,Kun Bao
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:126: 111266-111266 被引量:4
标识
DOI:10.1016/j.intimp.2023.111266
摘要

Membranous nephropathy (MN), the most prevalent form of nephrotic syndrome in non-diabetic adults globally, is currently the second most prevalent and fastest-increasing primary glomerular disease in China. Numerous renal disorders are developed partly due to ferroptosis. However, its relationship to the pathogenesis of MN has rarely been investigated in previous studies; actually, ferroptosis is closely linked to the immune microenvironment and inflammatory response, which might affect the entire process of MN development. In this study, we aimed to identify ferroptosis-related genes that are potentially related to immune cell infiltration, which can further contribute to MN pathogenesis. The microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Ferroptosis-related differentially expressed genes (FDEGs) were identified, which were further used for functional enrichment analysis. The common genes identified using the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithm and the support vector machine recursive feature elimination (SVM-RFE) algorithm were used to identify the characteristic genes related to ferroptosis. The feasibility of the 7 genes as a distinguishing factor was assessed using the receiver operating characteristic (ROC) curve, with the area under the curve (AUC) score serving as the evaluation metric. Gene set enrichment analysis (GSEA) and correlation analysis of these genes were further performed. The correlation between the expression of these genes and immune cell infiltration inferred by single sample gene set enrichment analysis (ssGSEA) algorithm was explored. As a result, 7 genes, including NR1D1, YTHDC2, EGR1, ZFP36, RRM2, RELA and PDK4, which were most relevant to immune cell infiltration, were identified to be potential diagnostic genes in MN patients. Next, the signature genes were validated with other GEO datasets. In the subsequent steps, we conducted quantitative real-time fluorescence PCR (qRT-PCR) analysis and immunohistochemistry (IHC) method on the cationic bovine serum albumin (C-BSA) induced membranous nephropathy (MN) rat model and the passive Heymann nephritis (pHN) rat model to examine characteristic genes. Finally, we analysed the mRNA expression patterns of hub genes in MN patients and normal controls using the Nephroseq V5 online platform. In concise terms, our study successfully identified biomarkers specific to MN patients and delved into the potential interplay between these markers and immune cell infiltration. This knowledge bears significance for the diagnosis and prospective treatment strategies for individuals affected by MN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土土完成签到 ,获得积分10
1秒前
fhz关闭了fhz文献求助
1秒前
后陡门小学生完成签到 ,获得积分10
1秒前
1秒前
1秒前
唯心止论完成签到,获得积分10
2秒前
希望天下0贩的0应助洪亭采纳,获得10
2秒前
糖炒李子完成签到,获得积分10
2秒前
2秒前
2秒前
L山间葱发布了新的文献求助10
3秒前
yuan完成签到,获得积分10
3秒前
2R完成签到,获得积分10
3秒前
3秒前
希望天下0贩的0应助yqsf789采纳,获得10
3秒前
Dyson Hou发布了新的文献求助10
4秒前
4秒前
李丽完成签到,获得积分20
4秒前
落后十八完成签到,获得积分10
4秒前
0812完成签到,获得积分10
4秒前
4秒前
伦爸爸完成签到,获得积分10
5秒前
忧虑的鹭洋完成签到,获得积分10
5秒前
云ch发布了新的文献求助10
5秒前
5秒前
蓝天发布了新的文献求助10
5秒前
miemiemie完成签到,获得积分10
5秒前
华仔应助李欣悦采纳,获得10
6秒前
6秒前
Echo_枕星关注了科研通微信公众号
6秒前
6秒前
光亮又晴发布了新的文献求助10
6秒前
6秒前
杜祖盛完成签到,获得积分10
6秒前
7秒前
7秒前
Zzz完成签到,获得积分20
7秒前
TINASO完成签到,获得积分10
8秒前
XIAOXIAOLI完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836