Prediction of biomarkers associated with membranous nephropathy: Bioinformatic analysis and experimental validation

接收机工作特性 基因 微阵列分析技术 免疫系统 生物 计算生物学 发病机制 Lasso(编程语言) 基因表达谱 基因表达 免疫学 遗传学 医学 计算机科学 内科学 万维网
作者
Miaoru Han,Yi Wang,Xiaoyan Huang,Ping Li,Wenjun Shan,Haowen Gu,Houchun Wang,Qinghua Zhang,Kun Bao
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:126: 111266-111266 被引量:4
标识
DOI:10.1016/j.intimp.2023.111266
摘要

Membranous nephropathy (MN), the most prevalent form of nephrotic syndrome in non-diabetic adults globally, is currently the second most prevalent and fastest-increasing primary glomerular disease in China. Numerous renal disorders are developed partly due to ferroptosis. However, its relationship to the pathogenesis of MN has rarely been investigated in previous studies; actually, ferroptosis is closely linked to the immune microenvironment and inflammatory response, which might affect the entire process of MN development. In this study, we aimed to identify ferroptosis-related genes that are potentially related to immune cell infiltration, which can further contribute to MN pathogenesis. The microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Ferroptosis-related differentially expressed genes (FDEGs) were identified, which were further used for functional enrichment analysis. The common genes identified using the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithm and the support vector machine recursive feature elimination (SVM-RFE) algorithm were used to identify the characteristic genes related to ferroptosis. The feasibility of the 7 genes as a distinguishing factor was assessed using the receiver operating characteristic (ROC) curve, with the area under the curve (AUC) score serving as the evaluation metric. Gene set enrichment analysis (GSEA) and correlation analysis of these genes were further performed. The correlation between the expression of these genes and immune cell infiltration inferred by single sample gene set enrichment analysis (ssGSEA) algorithm was explored. As a result, 7 genes, including NR1D1, YTHDC2, EGR1, ZFP36, RRM2, RELA and PDK4, which were most relevant to immune cell infiltration, were identified to be potential diagnostic genes in MN patients. Next, the signature genes were validated with other GEO datasets. In the subsequent steps, we conducted quantitative real-time fluorescence PCR (qRT-PCR) analysis and immunohistochemistry (IHC) method on the cationic bovine serum albumin (C-BSA) induced membranous nephropathy (MN) rat model and the passive Heymann nephritis (pHN) rat model to examine characteristic genes. Finally, we analysed the mRNA expression patterns of hub genes in MN patients and normal controls using the Nephroseq V5 online platform. In concise terms, our study successfully identified biomarkers specific to MN patients and delved into the potential interplay between these markers and immune cell infiltration. This knowledge bears significance for the diagnosis and prospective treatment strategies for individuals affected by MN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐唐完成签到,获得积分10
1秒前
活力的泥猴桃完成签到 ,获得积分10
3秒前
9秒前
小蘑菇应助xhy采纳,获得10
12秒前
夏姬宁静完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
桂鱼完成签到 ,获得积分10
20秒前
Cell完成签到 ,获得积分10
26秒前
asdwind完成签到,获得积分10
28秒前
SDS完成签到 ,获得积分10
36秒前
甜甜圈完成签到 ,获得积分10
40秒前
linci完成签到,获得积分10
41秒前
白凌风完成签到 ,获得积分10
44秒前
46秒前
511完成签到 ,获得积分10
48秒前
Canma完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
54秒前
迷人绿柏完成签到 ,获得积分10
56秒前
fxy完成签到 ,获得积分10
1分钟前
ycc完成签到,获得积分10
1分钟前
popo6150完成签到 ,获得积分10
1分钟前
李健的粉丝团团长应助xxl3采纳,获得10
1分钟前
王波完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
tang完成签到,获得积分10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
三杠完成签到 ,获得积分10
1分钟前
康康完成签到 ,获得积分10
1分钟前
Docsiwen完成签到 ,获得积分10
1分钟前
拼搏的羊青完成签到,获得积分10
1分钟前
cinnamonbrd完成签到,获得积分10
1分钟前
燕儿完成签到 ,获得积分10
1分钟前
jintian完成签到 ,获得积分10
1分钟前
胡杨树2006完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
坦率雪枫完成签到 ,获得积分10
2分钟前
2分钟前
嗯嗯完成签到 ,获得积分10
2分钟前
2分钟前
23333完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910669
求助须知:如何正确求助?哪些是违规求助? 4186400
关于积分的说明 12999449
捐赠科研通 3953919
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093837