亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fault diagnosis of injection molding machine non-return valve based on data-driven model

材料科学 造型(装饰) 注塑机 断层(地质) 机械工程 复合材料 工程制图 工程类 模具 地震学 地质学
作者
Xinming Wang,Yitao Ma,Kaifang Dang,Bing Zhao,Anmin Chen,Weimin Yang,Pengcheng Xie
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:117: 145-153 被引量:2
标识
DOI:10.1016/j.jmapro.2024.03.019
摘要

Non-return valve (NRV) is one of the key components in determining the consistency of the quality of the products molded by injection molding machine. Wear on the NRV affects the quality of the molded product. Nevertheless, detecting wear on the NRV can be challenging and disassembly of the machine is the only diagnostic method, which can have a negative impact on productivity. In this paper, a data-driven fault diagnosis method is proposed, which uses Stacked Auto Encoder (SAE) to analyze the pressure, torque, and displacement signals of the injection molding machine and combined with XGBoost (Extreme Gradient Boosting) to diagnose the faults of the NRV. The experimental results indicate that the SAE-XGBoost method accurately predicts NRV failures. Compared to using only XGBoost for prediction, the accuracy has improved from 97.5% to 99.6%. Eventually, the SAE-XGBoost model is integrated into the control program of the injection molding machine in the form of functional modules. Throughout the production process, the model adeptly monitors and identifies the production profile, promptly dispatching warning messages to users when diagnosing NRV wear. This facilitates intelligent diagnosis of the service status of injection molding machine components, which will have a positive influence on improving the production efficiency and intelligence of injection molding machines. The results of this study represent a synergistic application of artificial intelligence and time-domain statistical features in the realm of fault diagnosis for injection molding machines. This has the potential to significantly broaden the scope of AI utilization within the domain of injection molding processes, thereby advancing the intelligent technology associated with injection molding machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
36秒前
七大洋的风完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Akim应助Moona采纳,获得10
1分钟前
2分钟前
乾坤侠客LW完成签到,获得积分10
2分钟前
繁星长明应助Marshall采纳,获得10
3分钟前
思辰。完成签到,获得积分10
3分钟前
ya发布了新的文献求助10
3分钟前
Timelapse应助rainy采纳,获得10
3分钟前
传奇3应助ya采纳,获得10
3分钟前
Mandy完成签到,获得积分10
3分钟前
星辰大海应助Marshall采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
3分钟前
Xingkun_li完成签到,获得积分10
3分钟前
4分钟前
Arueliano完成签到,获得积分10
4分钟前
Marshall发布了新的文献求助10
4分钟前
Marshall完成签到,获得积分10
4分钟前
沉甸甸完成签到,获得积分10
4分钟前
4分钟前
NINI完成签到 ,获得积分10
4分钟前
小小虾完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
觅松发布了新的文献求助10
5分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
乐乐应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
sweet1完成签到,获得积分10
6分钟前
李爱国应助Olivergaga采纳,获得10
6分钟前
Fairy完成签到,获得积分10
7分钟前
7分钟前
Olivergaga发布了新的文献求助10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714851
求助须知:如何正确求助?哪些是违规求助? 5227581
关于积分的说明 15273752
捐赠科研通 4866025
什么是DOI,文献DOI怎么找? 2612602
邀请新用户注册赠送积分活动 1562787
关于科研通互助平台的介绍 1520051