Fault diagnosis of injection molding machine non-return valve based on data-driven model

材料科学 造型(装饰) 注塑机 断层(地质) 机械工程 复合材料 工程制图 工程类 模具 地质学 地震学
作者
Xinming Wang,Yitao Ma,Kaifang Dang,Bing Zhao,Anmin Chen,Weimin Yang,Pengcheng Xie
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:117: 145-153 被引量:2
标识
DOI:10.1016/j.jmapro.2024.03.019
摘要

Non-return valve (NRV) is one of the key components in determining the consistency of the quality of the products molded by injection molding machine. Wear on the NRV affects the quality of the molded product. Nevertheless, detecting wear on the NRV can be challenging and disassembly of the machine is the only diagnostic method, which can have a negative impact on productivity. In this paper, a data-driven fault diagnosis method is proposed, which uses Stacked Auto Encoder (SAE) to analyze the pressure, torque, and displacement signals of the injection molding machine and combined with XGBoost (Extreme Gradient Boosting) to diagnose the faults of the NRV. The experimental results indicate that the SAE-XGBoost method accurately predicts NRV failures. Compared to using only XGBoost for prediction, the accuracy has improved from 97.5% to 99.6%. Eventually, the SAE-XGBoost model is integrated into the control program of the injection molding machine in the form of functional modules. Throughout the production process, the model adeptly monitors and identifies the production profile, promptly dispatching warning messages to users when diagnosing NRV wear. This facilitates intelligent diagnosis of the service status of injection molding machine components, which will have a positive influence on improving the production efficiency and intelligence of injection molding machines. The results of this study represent a synergistic application of artificial intelligence and time-domain statistical features in the realm of fault diagnosis for injection molding machines. This has the potential to significantly broaden the scope of AI utilization within the domain of injection molding processes, thereby advancing the intelligent technology associated with injection molding machines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
91ge发布了新的文献求助10
刚刚
小蘑菇应助自然秋双采纳,获得10
1秒前
烂漫的雅容完成签到,获得积分10
1秒前
浩儿发布了新的文献求助10
1秒前
1秒前
Penny完成签到,获得积分10
1秒前
1秒前
怂宝儿完成签到,获得积分10
2秒前
满天星辰独览完成签到 ,获得积分10
2秒前
3秒前
科研通AI2S应助liang_zai采纳,获得30
3秒前
科研通AI6应助张豪杰采纳,获得10
3秒前
3秒前
3秒前
dameng139完成签到,获得积分10
3秒前
4秒前
章鱼哥发布了新的文献求助10
4秒前
Freesia发布了新的文献求助10
4秒前
YuGe发布了新的文献求助10
4秒前
5秒前
5秒前
大模型应助114514采纳,获得10
5秒前
师霸完成签到,获得积分10
6秒前
6秒前
7秒前
清爽的柚子完成签到 ,获得积分10
7秒前
cyrong完成签到,获得积分10
7秒前
8秒前
9秒前
zhou发布了新的文献求助10
9秒前
caohuijun完成签到,获得积分10
9秒前
为你比拟发布了新的文献求助10
9秒前
Akim应助彩色大船采纳,获得10
10秒前
白云苍狗发布了新的文献求助10
10秒前
Ansong发布了新的文献求助10
10秒前
marongzhi发布了新的文献求助10
10秒前
10秒前
忐忑的邑完成签到,获得积分10
11秒前
12秒前
田様应助无语的酸奶采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283636
求助须知:如何正确求助?哪些是违规求助? 4437415
关于积分的说明 13813418
捐赠科研通 4318122
什么是DOI,文献DOI怎么找? 2370293
邀请新用户注册赠送积分活动 1365614
关于科研通互助平台的介绍 1329113