亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fault diagnosis of injection molding machine non-return valve based on data-driven model

材料科学 造型(装饰) 注塑机 断层(地质) 机械工程 复合材料 工程制图 工程类 模具 地质学 地震学
作者
Xinming Wang,Yitao Ma,Kaifang Dang,Bing Zhao,Anmin Chen,Weimin Yang,Pengcheng Xie
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:117: 145-153 被引量:2
标识
DOI:10.1016/j.jmapro.2024.03.019
摘要

Non-return valve (NRV) is one of the key components in determining the consistency of the quality of the products molded by injection molding machine. Wear on the NRV affects the quality of the molded product. Nevertheless, detecting wear on the NRV can be challenging and disassembly of the machine is the only diagnostic method, which can have a negative impact on productivity. In this paper, a data-driven fault diagnosis method is proposed, which uses Stacked Auto Encoder (SAE) to analyze the pressure, torque, and displacement signals of the injection molding machine and combined with XGBoost (Extreme Gradient Boosting) to diagnose the faults of the NRV. The experimental results indicate that the SAE-XGBoost method accurately predicts NRV failures. Compared to using only XGBoost for prediction, the accuracy has improved from 97.5% to 99.6%. Eventually, the SAE-XGBoost model is integrated into the control program of the injection molding machine in the form of functional modules. Throughout the production process, the model adeptly monitors and identifies the production profile, promptly dispatching warning messages to users when diagnosing NRV wear. This facilitates intelligent diagnosis of the service status of injection molding machine components, which will have a positive influence on improving the production efficiency and intelligence of injection molding machines. The results of this study represent a synergistic application of artificial intelligence and time-domain statistical features in the realm of fault diagnosis for injection molding machines. This has the potential to significantly broaden the scope of AI utilization within the domain of injection molding processes, thereby advancing the intelligent technology associated with injection molding machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
2秒前
NattyPoe应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
22秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
34秒前
充电宝应助酷炫灰狼采纳,获得10
35秒前
李爱国应助可靠的寒风采纳,获得10
48秒前
TT完成签到 ,获得积分10
53秒前
56秒前
59秒前
zsmj23完成签到 ,获得积分0
1分钟前
sun发布了新的文献求助10
1分钟前
林一发布了新的文献求助10
1分钟前
Hello应助雾里采纳,获得10
1分钟前
1分钟前
小二郎应助鳄鱼不做饿梦采纳,获得10
1分钟前
Criminology34应助林一采纳,获得10
1分钟前
1分钟前
酷炫灰狼发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
蜜汁章鱼丸完成签到 ,获得积分10
2分钟前
赘婿应助酷炫灰狼采纳,获得10
2分钟前
2分钟前
酷炫灰狼发布了新的文献求助10
2分钟前
3分钟前
3分钟前
Jasper应助酷炫灰狼采纳,获得10
3分钟前
3分钟前
小卢卢快闭嘴完成签到,获得积分10
3分钟前
3分钟前
酷炫灰狼完成签到,获得积分10
3分钟前
3分钟前
Akim应助Developing_human采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
daizao完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399