已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Frequency-Based Optimal Style Mix for Domain Generalization in Semantic Segmentation of Remote Sensing Images

计算机科学 分割 人工智能 一般化 一致性(知识库) 频域 正规化(语言学) 领域(数学分析) 试验数据 模式识别(心理学) 算法 计算机视觉 数学 数学分析 程序设计语言
作者
Reo Iizuka,Junshi Xia,Naoto Yokoya
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:3
标识
DOI:10.1109/tgrs.2023.3344670
摘要

Supervised learning methods assume that training and test data are sampled from the same distribution. However, this assumption is not always satisfied in practical situations of land cover semantic segmentation when models trained in a particular source domain are applied to other regions. This is because domain shifts caused by variations in location, time, and sensor alter the distribution of images in the target domain from that of the source domain, resulting in significant degradation of model performance. To mitigate this limitation, domain generalization (DG) has gained attention as a way of generalizing from source domain features to unseen target domains. One approach is style randomization (SR), which enables models to learn domain-invariant features through randomizing styles of images in the source domain. Despite its potential, existing methods face several challenges, such as inflexible frequency decomposition, high computational and data preparation demands, slow speed of randomization, and lack of consistency in learning. To address these limitations, we propose a frequency-based optimal style mix (FOSMix), which consists of three components: 1) full mix (FM) enhances the data space by maximally mixing the style of reference images into the source domain; 2) optimal mix (OM) keeps the essential frequencies for segmentation and randomizes others to promote generalization; and 3) regularization of consistency ensures that the model can stably learn different images with the same semantics. Extensive experiments that require the model's generalization ability, with domain shift caused by variations in regions and resolutions, demonstrate that the proposed method achieves superior segmentation in remote sensing. The source code is available at https://github.com/Reo-I/FOSMix .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
1秒前
guozizi发布了新的文献求助30
1秒前
岛不言完成签到,获得积分20
4秒前
4秒前
9秒前
苏苏发布了新的文献求助20
11秒前
12秒前
研友_LaOyQZ发布了新的文献求助10
13秒前
一介尘埃完成签到 ,获得积分10
14秒前
Mak完成签到,获得积分20
23秒前
lianghuihua完成签到 ,获得积分10
24秒前
冷酷哈密瓜完成签到,获得积分10
28秒前
在水一方应助春天采纳,获得10
29秒前
jawa完成签到 ,获得积分10
33秒前
NgiNgu完成签到 ,获得积分10
35秒前
脑洞疼应助心动nofear采纳,获得10
35秒前
犹豫梦旋完成签到,获得积分10
36秒前
36秒前
火翟丰丰山心完成签到,获得积分10
39秒前
39秒前
YEM完成签到,获得积分10
39秒前
盛夏发布了新的文献求助50
43秒前
春天发布了新的文献求助10
43秒前
下颌磨牙钳完成签到,获得积分10
46秒前
Lyncon完成签到,获得积分10
47秒前
48秒前
天天快乐应助科研通管家采纳,获得10
49秒前
加减乘除发布了新的文献求助10
49秒前
李健应助科研通管家采纳,获得10
49秒前
coolkid应助科研通管家采纳,获得10
49秒前
49秒前
悦耳代亦完成签到 ,获得积分0
49秒前
隔壁小黄完成签到 ,获得积分10
50秒前
风趣小蜜蜂完成签到 ,获得积分10
51秒前
科研通AI2S应助PSY采纳,获得10
53秒前
北国完成签到,获得积分20
57秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
戴哈哈发布了新的文献求助10
1分钟前
有魅力书雪完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210