Frequency-Based Optimal Style Mix for Domain Generalization in Semantic Segmentation of Remote Sensing Images

计算机科学 分割 人工智能 一般化 一致性(知识库) 频域 正规化(语言学) 领域(数学分析) 试验数据 模式识别(心理学) 算法 计算机视觉 数学 数学分析 程序设计语言
作者
Reo Iizuka,Junshi Xia,Naoto Yokoya
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:3
标识
DOI:10.1109/tgrs.2023.3344670
摘要

Supervised learning methods assume that training and test data are sampled from the same distribution. However, this assumption is not always satisfied in practical situations of land cover semantic segmentation when models trained in a particular source domain are applied to other regions. This is because domain shifts caused by variations in location, time, and sensor alter the distribution of images in the target domain from that of the source domain, resulting in significant degradation of model performance. To mitigate this limitation, domain generalization (DG) has gained attention as a way of generalizing from source domain features to unseen target domains. One approach is style randomization (SR), which enables models to learn domain-invariant features through randomizing styles of images in the source domain. Despite its potential, existing methods face several challenges, such as inflexible frequency decomposition, high computational and data preparation demands, slow speed of randomization, and lack of consistency in learning. To address these limitations, we propose a frequency-based optimal style mix (FOSMix), which consists of three components: 1) full mix (FM) enhances the data space by maximally mixing the style of reference images into the source domain; 2) optimal mix (OM) keeps the essential frequencies for segmentation and randomizes others to promote generalization; and 3) regularization of consistency ensures that the model can stably learn different images with the same semantics. Extensive experiments that require the model's generalization ability, with domain shift caused by variations in regions and resolutions, demonstrate that the proposed method achieves superior segmentation in remote sensing. The source code is available at https://github.com/Reo-I/FOSMix .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
超帅的小鸽子完成签到,获得积分10
5秒前
5秒前
WANGT完成签到,获得积分10
6秒前
领导范儿应助Regina采纳,获得10
7秒前
Orange应助zz采纳,获得10
8秒前
雁昔完成签到,获得积分10
9秒前
张大宝完成签到,获得积分10
9秒前
9秒前
启程牛牛完成签到,获得积分0
10秒前
张张发布了新的文献求助10
11秒前
失眠的梦之完成签到,获得积分10
12秒前
英姑应助像鱼采纳,获得10
12秒前
柳城完成签到,获得积分10
12秒前
13秒前
13秒前
大个应助GLY采纳,获得10
13秒前
13秒前
脑洞疼应助clearlove采纳,获得10
14秒前
Salt1222完成签到,获得积分10
14秒前
勇敢虫子不怕困难完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
123发布了新的文献求助10
16秒前
17秒前
迷路毛豆发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
CodeCraft应助LLLLL采纳,获得10
20秒前
21秒前
22秒前
优雅灵波发布了新的文献求助50
22秒前
zz发布了新的文献求助10
22秒前
123完成签到,获得积分10
22秒前
wangqiqi完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145115
求助须知:如何正确求助?哪些是违规求助? 2796489
关于积分的说明 7819996
捐赠科研通 2452771
什么是DOI,文献DOI怎么找? 1305202
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449