Frequency-Based Optimal Style Mix for Domain Generalization in Semantic Segmentation of Remote Sensing Images

计算机科学 分割 人工智能 一般化 一致性(知识库) 频域 正规化(语言学) 领域(数学分析) 试验数据 模式识别(心理学) 算法 计算机视觉 数学 数学分析 程序设计语言
作者
Reo Iizuka,Junshi Xia,Naoto Yokoya
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:3
标识
DOI:10.1109/tgrs.2023.3344670
摘要

Supervised learning methods assume that training and test data are sampled from the same distribution. However, this assumption is not always satisfied in practical situations of land cover semantic segmentation when models trained in a particular source domain are applied to other regions. This is because domain shifts caused by variations in location, time, and sensor alter the distribution of images in the target domain from that of the source domain, resulting in significant degradation of model performance. To mitigate this limitation, domain generalization (DG) has gained attention as a way of generalizing from source domain features to unseen target domains. One approach is style randomization (SR), which enables models to learn domain-invariant features through randomizing styles of images in the source domain. Despite its potential, existing methods face several challenges, such as inflexible frequency decomposition, high computational and data preparation demands, slow speed of randomization, and lack of consistency in learning. To address these limitations, we propose a frequency-based optimal style mix (FOSMix), which consists of three components: 1) full mix (FM) enhances the data space by maximally mixing the style of reference images into the source domain; 2) optimal mix (OM) keeps the essential frequencies for segmentation and randomizes others to promote generalization; and 3) regularization of consistency ensures that the model can stably learn different images with the same semantics. Extensive experiments that require the model's generalization ability, with domain shift caused by variations in regions and resolutions, demonstrate that the proposed method achieves superior segmentation in remote sensing. The source code is available at https://github.com/Reo-I/FOSMix .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hungrylunch应助woshiwuziq采纳,获得20
刚刚
合适苗条发布了新的文献求助10
刚刚
安静听白发布了新的文献求助10
刚刚
krystal发布了新的文献求助10
刚刚
1秒前
15122303完成签到,获得积分10
1秒前
lht完成签到 ,获得积分10
2秒前
传奇3应助纯真电源采纳,获得10
2秒前
环走鱼尾纹完成签到 ,获得积分10
2秒前
xiuxiu_27发布了新的文献求助10
3秒前
222完成签到,获得积分10
3秒前
zyz1132完成签到,获得积分10
3秒前
何处芳歇完成签到,获得积分10
4秒前
4秒前
LXYang完成签到,获得积分10
4秒前
4秒前
LL完成签到,获得积分10
4秒前
5秒前
5秒前
十月发布了新的文献求助20
6秒前
6秒前
针地很不戳完成签到,获得积分10
6秒前
7秒前
奋斗金连完成签到,获得积分10
7秒前
科研菜鸟完成签到,获得积分10
7秒前
圈圈发布了新的文献求助10
8秒前
zhanglh完成签到 ,获得积分10
8秒前
8秒前
Liu完成签到,获得积分10
8秒前
啊大大哇完成签到,获得积分10
8秒前
一平驳回了HEIKU应助
9秒前
9秒前
草莓奶昔完成签到 ,获得积分10
9秒前
cyx发布了新的文献求助10
9秒前
10秒前
littleJ完成签到,获得积分10
10秒前
Yolo发布了新的文献求助10
10秒前
阿尔法发布了新的文献求助10
11秒前
科研菜鸟发布了新的文献求助10
11秒前
Liu发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678