Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems

元启发式 计算机科学 测试套件 水准点(测量) 算法 犰狳 数学优化 数学 机器学习 测试用例 生态学 地质学 历史 回归分析 大地测量学 考古 生物
作者
Omar Alsayyed,Tareq Hamadneh,Hassan Al-Tarawneh,Mohammad Alqudah,Saikat Gochhait,Irina Leonova,O.P. Malik,Mohammad Dehghani
出处
期刊:Biomimetics [MDPI AG]
卷期号:8 (8): 619-619 被引量:15
标识
DOI:10.3390/biomimetics8080619
摘要

In this paper, a new bio-inspired metaheuristic algorithm called Giant Armadillo Optimization (GAO) is introduced, which imitates the natural behavior of giant armadillo in the wild. The fundamental inspiration in the design of GAO is derived from the hunting strategy of giant armadillos in moving towards prey positions and digging termite mounds. The theory of GAO is expressed and mathematically modeled in two phases: (i) exploration based on simulating the movement of giant armadillos towards termite mounds, and (ii) exploitation based on simulating giant armadillos’ digging skills in order to prey on and rip open termite mounds. The performance of GAO in handling optimization tasks is evaluated in order to solve the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that GAO is able to achieve effective solutions for optimization problems by benefiting from its high abilities in exploration, exploitation, and balancing them during the search process. The quality of the results obtained from GAO is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that GAO presents superior performance compared to competitor algorithms by providing better results for most of the benchmark functions. The statistical analysis of the Wilcoxon rank sum test confirms that GAO has a significant statistical superiority over competitor algorithms. The implementation of GAO on the CEC 2011 test suite and four engineering design problems show that the proposed approach has effective performance in dealing with real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
酷波er应助Garfield采纳,获得10
2秒前
Owen应助韦行天采纳,获得30
3秒前
尊敬时光发布了新的文献求助10
4秒前
深情安青应助zzr123采纳,获得10
5秒前
A班袁湘琴完成签到,获得积分10
5秒前
兮兮兮兮兮兮完成签到,获得积分10
5秒前
蓝胖子发布了新的文献求助30
5秒前
笨笨念真完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
JOSIAH完成签到,获得积分10
9秒前
10秒前
10秒前
yarkye完成签到,获得积分10
10秒前
吃猫的鱼发布了新的文献求助10
11秒前
粉红色的滑动变阻器完成签到 ,获得积分10
11秒前
Mia发布了新的文献求助10
12秒前
科研通AI2S应助A班袁湘琴采纳,获得10
12秒前
Hello应助笨笨念真采纳,获得10
13秒前
13秒前
yang发布了新的文献求助10
13秒前
852应助Hzy采纳,获得10
13秒前
研友_LOoomL发布了新的文献求助10
14秒前
星辰大海应助熊宜浓采纳,获得10
14秒前
随心完成签到,获得积分10
14秒前
俺嫩爹发布了新的文献求助10
15秒前
天天发布了新的文献求助10
15秒前
16秒前
慕青应助sally采纳,获得10
18秒前
19秒前
韦行天发布了新的文献求助30
21秒前
慕子默完成签到,获得积分10
21秒前
香蕉觅云应助辛勤太阳采纳,获得10
21秒前
21秒前
11完成签到 ,获得积分10
23秒前
赘婿应助Mia采纳,获得10
23秒前
23秒前
厦门致德完成签到,获得积分10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229126
求助须知:如何正确求助?哪些是违规求助? 2876954
关于积分的说明 8196847
捐赠科研通 2544250
什么是DOI,文献DOI怎么找? 1374230
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621703