亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems

元启发式 计算机科学 算法 犰狳 优化算法 数学优化 数学 生态学 生物
作者
Omar Alsayyed,Tareq Hamadneh,Hassan Al-Tarawneh,Mohammad Alqudah,Saikat Gochhait,Irina Leonova,O.P. Malik,Mohammad Dehghani
出处
期刊:Biomimetics [MDPI AG]
卷期号:8 (8): 619-619 被引量:31
标识
DOI:10.3390/biomimetics8080619
摘要

In this paper, a new bio-inspired metaheuristic algorithm called Giant Armadillo Optimization (GAO) is introduced, which imitates the natural behavior of giant armadillo in the wild. The fundamental inspiration in the design of GAO is derived from the hunting strategy of giant armadillos in moving towards prey positions and digging termite mounds. The theory of GAO is expressed and mathematically modeled in two phases: (i) exploration based on simulating the movement of giant armadillos towards termite mounds, and (ii) exploitation based on simulating giant armadillos' digging skills in order to prey on and rip open termite mounds. The performance of GAO in handling optimization tasks is evaluated in order to solve the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that GAO is able to achieve effective solutions for optimization problems by benefiting from its high abilities in exploration, exploitation, and balancing them during the search process. The quality of the results obtained from GAO is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that GAO presents superior performance compared to competitor algorithms by providing better results for most of the benchmark functions. The statistical analysis of the Wilcoxon rank sum test confirms that GAO has a significant statistical superiority over competitor algorithms. The implementation of GAO on the CEC 2011 test suite and four engineering design problems show that the proposed approach has effective performance in dealing with real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
_ban发布了新的文献求助30
14秒前
英俊的铭应助_ban采纳,获得10
28秒前
gszy1975完成签到,获得积分10
33秒前
hhuajw完成签到,获得积分10
44秒前
难过忆山发布了新的文献求助10
1分钟前
1分钟前
sssss发布了新的文献求助40
1分钟前
sssss完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
3分钟前
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
汉堡包应助桃子e采纳,获得10
3分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
伊伊伊伊一一一完成签到,获得积分10
3分钟前
ding应助scn666采纳,获得10
3分钟前
思源应助桃子e采纳,获得10
3分钟前
欣喜的香菱完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
桃子e发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
难过忆山发布了新的文献求助10
5分钟前
英姑应助Zz采纳,获得10
5分钟前
所所应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
hq完成签到 ,获得积分10
5分钟前
5分钟前
poki完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617