An Improved VMD–EEMD–LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data

均方误差 残余物 希尔伯特-黄变换 系列(地层学) 模式(计算机接口) 时间序列 测距 数学 算法 计算机科学 统计 大地测量学 地质学 古生物学 白噪声 操作系统
作者
Hongkang Chen,Tieding Lu,Jiahui Huang,Xiaoxing He,Xiwen Sun
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (12): 2386-2386 被引量:2
标识
DOI:10.3390/jmse11122386
摘要

Changes in sea level exhibit nonlinearity, nonstationarity, and multivariable characteristics, making traditional time series forecasting methods less effective in producing satisfactory results. To enhance the accuracy of sea level change predictions, this study introduced an improved variational mode decomposition and ensemble empirical mode decomposition–long short-term memory hybrid model (VMD–EEMD–LSTM). This model decomposes satellite altimetry data from near the Dutch coast using VMD, resulting in components of the intrinsic mode functions (IMFs) with various frequencies, along with a residual sequence. EEMD further dissects the residual sequence obtained from VMD into second-order components. These IMFs decomposed by VMD and EEMD are utilized as features in the LSTM model for making predictions, culminating in the final forecasted results. The experimental results, obtained through a comparative analysis of six sets of Dutch coastal sea surface height data, confirm the excellent accuracy of the hybrid model proposed (root mean square error (RMSE) = 47.2 mm, mean absolute error (MAE) = 33.3 mm, coefficient of determination (R2) = 0.9). Compared to the VMD-LSTM model, the average decrease in RMSE was 58.7%, the average reduction in MAE was 60.0%, and the average increase in R2 was 49.9%. In comparison to the EEMD-LSTM model, the average decrease in RMSE was 27.0%, the average decrease in MAE was 28.0%, and the average increase in R2 was 6.5%. The VMD–EEMD–LSTM model exhibited significantly improved predictive performance. The model proposed in this study demonstrates a notable enhancement in global mean sea lever (GMSL) forecasting accuracy during testing along the Dutch coast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno应助娇气的追命采纳,获得10
刚刚
酷波er应助星愿采纳,获得10
1秒前
漂亮的珂珂完成签到 ,获得积分10
3秒前
Hale完成签到,获得积分0
3秒前
静静小可爱完成签到,获得积分10
3秒前
3秒前
陶醉的熊完成签到,获得积分10
3秒前
lmr完成签到,获得积分10
4秒前
烟喜完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
whiteside完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
井野浮应助choubao采纳,获得10
7秒前
7秒前
7秒前
8秒前
都是发布了新的文献求助10
8秒前
Aria发布了新的文献求助30
10秒前
米花发布了新的文献求助10
10秒前
10秒前
不配.应助小党打地鼠采纳,获得10
10秒前
11秒前
zhangyulong发布了新的文献求助10
11秒前
sooya发布了新的文献求助10
11秒前
咯咚发布了新的文献求助10
11秒前
pluto应助Aprilapple采纳,获得10
12秒前
12秒前
李麟发布了新的文献求助10
12秒前
可耐的摩托完成签到,获得积分10
13秒前
良月发布了新的文献求助30
14秒前
向阳发布了新的文献求助10
14秒前
14秒前
丘比特应助科研通管家采纳,获得10
15秒前
xjcy应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233579
求助须知:如何正确求助?哪些是违规求助? 2880164
关于积分的说明 8214083
捐赠科研通 2547585
什么是DOI,文献DOI怎么找? 1377081
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623154