An Improved VMD–EEMD–LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data

均方误差 残余物 希尔伯特-黄变换 系列(地层学) 模式(计算机接口) 时间序列 测距 数学 算法 计算机科学 统计 大地测量学 地质学 古生物学 白噪声 操作系统
作者
Hongkang Chen,Tieding Lu,Jiahui Huang,Xiaoxing He,Xiwen Sun
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (12): 2386-2386 被引量:2
标识
DOI:10.3390/jmse11122386
摘要

Changes in sea level exhibit nonlinearity, nonstationarity, and multivariable characteristics, making traditional time series forecasting methods less effective in producing satisfactory results. To enhance the accuracy of sea level change predictions, this study introduced an improved variational mode decomposition and ensemble empirical mode decomposition–long short-term memory hybrid model (VMD–EEMD–LSTM). This model decomposes satellite altimetry data from near the Dutch coast using VMD, resulting in components of the intrinsic mode functions (IMFs) with various frequencies, along with a residual sequence. EEMD further dissects the residual sequence obtained from VMD into second-order components. These IMFs decomposed by VMD and EEMD are utilized as features in the LSTM model for making predictions, culminating in the final forecasted results. The experimental results, obtained through a comparative analysis of six sets of Dutch coastal sea surface height data, confirm the excellent accuracy of the hybrid model proposed (root mean square error (RMSE) = 47.2 mm, mean absolute error (MAE) = 33.3 mm, coefficient of determination (R2) = 0.9). Compared to the VMD-LSTM model, the average decrease in RMSE was 58.7%, the average reduction in MAE was 60.0%, and the average increase in R2 was 49.9%. In comparison to the EEMD-LSTM model, the average decrease in RMSE was 27.0%, the average decrease in MAE was 28.0%, and the average increase in R2 was 6.5%. The VMD–EEMD–LSTM model exhibited significantly improved predictive performance. The model proposed in this study demonstrates a notable enhancement in global mean sea lever (GMSL) forecasting accuracy during testing along the Dutch coast.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hony完成签到,获得积分10
3秒前
斯文败类应助郭子仪采纳,获得30
3秒前
4秒前
Thien应助lyp采纳,获得10
4秒前
4秒前
yyanxuemin919发布了新的文献求助10
5秒前
研友_Lmb15n发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
上帝粒子应助Liu采纳,获得50
8秒前
李伟峰完成签到,获得积分10
8秒前
9秒前
wy发布了新的文献求助10
9秒前
冷酷莫言发布了新的文献求助10
10秒前
qwer发布了新的文献求助10
10秒前
11秒前
嘿嘿发布了新的文献求助10
11秒前
jiabu完成签到 ,获得积分10
12秒前
学术费物发布了新的文献求助10
12秒前
12秒前
律香川照之完成签到,获得积分10
14秒前
看100篇文献完成签到,获得积分10
15秒前
sylus发布了新的文献求助10
16秒前
太兰完成签到 ,获得积分10
17秒前
wang完成签到,获得积分20
17秒前
18秒前
spc68应助chen采纳,获得10
18秒前
英姑应助暗中讨饭采纳,获得10
21秒前
只争朝夕应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
22秒前
wanci应助科研通管家采纳,获得10
22秒前
领导范儿应助qwer采纳,获得10
22秒前
22秒前
22秒前
22秒前
无尘发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432