已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Improved VMD–EEMD–LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data

均方误差 残余物 希尔伯特-黄变换 系列(地层学) 模式(计算机接口) 时间序列 测距 数学 算法 计算机科学 统计 大地测量学 地质学 古生物学 白噪声 操作系统
作者
Hongkang Chen,Tieding Lu,Jiahui Huang,Xiaoxing He,Xiwen Sun
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (12): 2386-2386 被引量:2
标识
DOI:10.3390/jmse11122386
摘要

Changes in sea level exhibit nonlinearity, nonstationarity, and multivariable characteristics, making traditional time series forecasting methods less effective in producing satisfactory results. To enhance the accuracy of sea level change predictions, this study introduced an improved variational mode decomposition and ensemble empirical mode decomposition–long short-term memory hybrid model (VMD–EEMD–LSTM). This model decomposes satellite altimetry data from near the Dutch coast using VMD, resulting in components of the intrinsic mode functions (IMFs) with various frequencies, along with a residual sequence. EEMD further dissects the residual sequence obtained from VMD into second-order components. These IMFs decomposed by VMD and EEMD are utilized as features in the LSTM model for making predictions, culminating in the final forecasted results. The experimental results, obtained through a comparative analysis of six sets of Dutch coastal sea surface height data, confirm the excellent accuracy of the hybrid model proposed (root mean square error (RMSE) = 47.2 mm, mean absolute error (MAE) = 33.3 mm, coefficient of determination (R2) = 0.9). Compared to the VMD-LSTM model, the average decrease in RMSE was 58.7%, the average reduction in MAE was 60.0%, and the average increase in R2 was 49.9%. In comparison to the EEMD-LSTM model, the average decrease in RMSE was 27.0%, the average decrease in MAE was 28.0%, and the average increase in R2 was 6.5%. The VMD–EEMD–LSTM model exhibited significantly improved predictive performance. The model proposed in this study demonstrates a notable enhancement in global mean sea lever (GMSL) forecasting accuracy during testing along the Dutch coast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助wys3712采纳,获得20
1秒前
古惑仔完成签到 ,获得积分10
2秒前
pxin发布了新的文献求助10
3秒前
yoongi发布了新的文献求助10
6秒前
6秒前
慕青应助蛋肠加蛋采纳,获得10
7秒前
蛋丽完成签到 ,获得积分10
8秒前
上好完成签到,获得积分10
10秒前
yhh发布了新的文献求助10
13秒前
13秒前
13秒前
益生菌小哥关注了科研通微信公众号
15秒前
洋yang关注了科研通微信公众号
16秒前
17秒前
失眠傲芙发布了新的文献求助10
17秒前
1111发布了新的文献求助10
17秒前
香蕉觅云应助幸运小冲鸭采纳,获得30
18秒前
fang完成签到 ,获得积分10
21秒前
22秒前
刘小源完成签到 ,获得积分10
25秒前
衍夏关注了科研通微信公众号
25秒前
25秒前
司马立果发布了新的文献求助10
27秒前
英姑应助羊水彤采纳,获得100
27秒前
碧蓝笑槐完成签到,获得积分10
28秒前
麦兜完成签到,获得积分10
28秒前
刻苦的砖头完成签到 ,获得积分10
29秒前
hjmx发布了新的文献求助10
30秒前
阳阳阳完成签到,获得积分10
32秒前
34秒前
笨笨的凡梅完成签到,获得积分10
34秒前
染染完成签到,获得积分10
35秒前
tj完成签到,获得积分10
37秒前
37秒前
阳阳阳发布了新的文献求助10
38秒前
思源应助终陌采纳,获得10
38秒前
40秒前
zhangDL发布了新的文献求助10
40秒前
ding应助只要两毛九采纳,获得30
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252704
求助须知:如何正确求助?哪些是违规求助? 4416333
关于积分的说明 13749452
捐赠科研通 4288358
什么是DOI,文献DOI怎么找? 2352895
邀请新用户注册赠送积分活动 1349738
关于科研通互助平台的介绍 1309271