已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Improved VMD–EEMD–LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data

均方误差 残余物 希尔伯特-黄变换 系列(地层学) 模式(计算机接口) 时间序列 测距 数学 算法 计算机科学 统计 大地测量学 地质学 古生物学 白噪声 操作系统
作者
Hongkang Chen,Tieding Lu,Jiahui Huang,Xiaoxing He,Xiwen Sun
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (12): 2386-2386 被引量:2
标识
DOI:10.3390/jmse11122386
摘要

Changes in sea level exhibit nonlinearity, nonstationarity, and multivariable characteristics, making traditional time series forecasting methods less effective in producing satisfactory results. To enhance the accuracy of sea level change predictions, this study introduced an improved variational mode decomposition and ensemble empirical mode decomposition–long short-term memory hybrid model (VMD–EEMD–LSTM). This model decomposes satellite altimetry data from near the Dutch coast using VMD, resulting in components of the intrinsic mode functions (IMFs) with various frequencies, along with a residual sequence. EEMD further dissects the residual sequence obtained from VMD into second-order components. These IMFs decomposed by VMD and EEMD are utilized as features in the LSTM model for making predictions, culminating in the final forecasted results. The experimental results, obtained through a comparative analysis of six sets of Dutch coastal sea surface height data, confirm the excellent accuracy of the hybrid model proposed (root mean square error (RMSE) = 47.2 mm, mean absolute error (MAE) = 33.3 mm, coefficient of determination (R2) = 0.9). Compared to the VMD-LSTM model, the average decrease in RMSE was 58.7%, the average reduction in MAE was 60.0%, and the average increase in R2 was 49.9%. In comparison to the EEMD-LSTM model, the average decrease in RMSE was 27.0%, the average decrease in MAE was 28.0%, and the average increase in R2 was 6.5%. The VMD–EEMD–LSTM model exhibited significantly improved predictive performance. The model proposed in this study demonstrates a notable enhancement in global mean sea lever (GMSL) forecasting accuracy during testing along the Dutch coast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qianmiao发布了新的文献求助30
2秒前
卡卡光波完成签到,获得积分10
4秒前
充电宝应助彩色靖儿采纳,获得10
5秒前
脑洞疼应助科研小白采纳,获得10
5秒前
5秒前
踏实的傲白完成签到 ,获得积分10
6秒前
7秒前
7秒前
CC发布了新的文献求助10
8秒前
9秒前
西西弗斯完成签到,获得积分10
9秒前
cici发布了新的文献求助10
10秒前
11秒前
12秒前
towerman发布了新的文献求助10
12秒前
英吉利25发布了新的文献求助10
13秒前
lio完成签到,获得积分10
14秒前
15秒前
斜阳完成签到 ,获得积分10
16秒前
Shawnchan完成签到,获得积分10
17秒前
17秒前
万能图书馆应助明水采纳,获得30
18秒前
19秒前
善学以致用应助朱虹采纳,获得10
20秒前
123发布了新的文献求助10
20秒前
Rondab应助眯眯眼的宛白采纳,获得10
21秒前
有人应助眯眯眼的宛白采纳,获得10
21秒前
Zoe发布了新的文献求助10
21秒前
彩色靖儿发布了新的文献求助10
22秒前
DSFSD发布了新的文献求助10
23秒前
甪用发布了新的文献求助10
24秒前
24秒前
神经蛙完成签到,获得积分10
25秒前
超级的妙晴完成签到 ,获得积分10
27秒前
28秒前
雪白寄容关注了科研通微信公众号
28秒前
Hello应助Zhy采纳,获得10
28秒前
嘉仔发布了新的文献求助10
29秒前
韩凡发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021