An Improved VMD–EEMD–LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data

均方误差 残余物 希尔伯特-黄变换 系列(地层学) 模式(计算机接口) 时间序列 测距 数学 算法 计算机科学 统计 大地测量学 地质学 古生物学 白噪声 操作系统
作者
Hongkang Chen,Tieding Lu,Jiahui Huang,Xiaoxing He,Xiwen Sun
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (12): 2386-2386 被引量:2
标识
DOI:10.3390/jmse11122386
摘要

Changes in sea level exhibit nonlinearity, nonstationarity, and multivariable characteristics, making traditional time series forecasting methods less effective in producing satisfactory results. To enhance the accuracy of sea level change predictions, this study introduced an improved variational mode decomposition and ensemble empirical mode decomposition–long short-term memory hybrid model (VMD–EEMD–LSTM). This model decomposes satellite altimetry data from near the Dutch coast using VMD, resulting in components of the intrinsic mode functions (IMFs) with various frequencies, along with a residual sequence. EEMD further dissects the residual sequence obtained from VMD into second-order components. These IMFs decomposed by VMD and EEMD are utilized as features in the LSTM model for making predictions, culminating in the final forecasted results. The experimental results, obtained through a comparative analysis of six sets of Dutch coastal sea surface height data, confirm the excellent accuracy of the hybrid model proposed (root mean square error (RMSE) = 47.2 mm, mean absolute error (MAE) = 33.3 mm, coefficient of determination (R2) = 0.9). Compared to the VMD-LSTM model, the average decrease in RMSE was 58.7%, the average reduction in MAE was 60.0%, and the average increase in R2 was 49.9%. In comparison to the EEMD-LSTM model, the average decrease in RMSE was 27.0%, the average decrease in MAE was 28.0%, and the average increase in R2 was 6.5%. The VMD–EEMD–LSTM model exhibited significantly improved predictive performance. The model proposed in this study demonstrates a notable enhancement in global mean sea lever (GMSL) forecasting accuracy during testing along the Dutch coast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓哥完成签到,获得积分10
刚刚
1秒前
Agan发布了新的文献求助10
1秒前
1秒前
2秒前
morlison发布了新的文献求助10
2秒前
科研通AI5应助金色年华采纳,获得10
4秒前
充电宝应助kh453采纳,获得10
4秒前
正经俠发布了新的文献求助10
4秒前
一衣发布了新的文献求助20
5秒前
可爱的函函应助药学牛马采纳,获得10
5秒前
XM发布了新的文献求助10
5秒前
专注之双完成签到,获得积分10
6秒前
SciGPT应助十一采纳,获得10
6秒前
6秒前
A1234完成签到,获得积分10
7秒前
刘铭晨发布了新的文献求助10
8秒前
孙冉冉完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
大模型应助hhzz采纳,获得10
13秒前
一只智慧喵完成签到,获得积分10
13秒前
科目三应助Fundamental采纳,获得10
14秒前
14秒前
miumiuka发布了新的文献求助10
15秒前
greenPASS666发布了新的文献求助10
16秒前
xuanxuan发布了新的文献求助10
16秒前
zfy发布了新的文献求助10
18秒前
18秒前
18秒前
Maor完成签到,获得积分10
18秒前
白菜发布了新的文献求助10
19秒前
19秒前
20秒前
妮妮完成签到 ,获得积分10
22秒前
22秒前
傲娇的凡旋应助spurs17采纳,获得10
22秒前
长情若魔完成签到,获得积分10
24秒前
XM完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808