DiffWater: Underwater Image Enhancement Based on Conditional Denoising Diffusion Probabilistic Model

水下 计算机科学 人工智能 计算机视觉 稳健性(进化) RGB颜色模型 图像复原 失真(音乐) 降噪 图像质量 概率逻辑 颜色校正 图像处理 图像(数学) 带宽(计算) 电信 生物化学 基因 海洋学 地质学 化学 放大器
作者
Meisheng Guan,Haiyong Xu,Gangyi Jiang,Mei Yu,Yeyao Chen,Ting Luo,Xuebo Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17 被引量:6
标识
DOI:10.1109/jstars.2023.3344453
摘要

Underwater imaging is often affected by light attenuation and scattering in water, leading to degraded visual quality such as color distortion, reduced contrast, and noise. Existing underwater image enhancement (UIE) methods often lack generalization capabilities, making them unable to adapt to various underwater images captured in different aquatic environments and lighting conditions. To address these challenges, a UIE method based on conditional denoising diffusion probabilistic model (DDPM) is proposed (DiffWater), which leverages the advantages of DDPM, and trains a stable and well-converged model capable of generating high-quality and diverse samples. Considering the multiple distortion issues in underwater imaging, unconditional DDPM may not achieve satisfactory enhancement and restoration results. Therefore, DiffWater utilizes the degraded underwater image with added color compensation as a conditional guide, through which the DiffWater achieves highquality restoration of degraded underwater images. Particularly, the proposed DiffWater introduces a color compensation method that performs channel-wise color compensation in the RGB color space, tailored to different water conditions and lighting scenarios, and utilizes this condition to guide the denoising process. In the experimental section, the proposed DiffWater method is tested on four real underwater image datasets and compared against existing methods. Experimental results demonstrate that DiffWater outperforms existing comparison methods in terms of enhancement quality and effectiveness, exhibiting stronger generalization capabilities and robustness
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
雨夜星空应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
冰魂应助科研通管家采纳,获得10
1秒前
雨夜星空应助科研通管家采纳,获得10
1秒前
3秒前
joysa发布了新的文献求助10
4秒前
田様应助落寞丹萱采纳,获得10
5秒前
5秒前
熠耀发布了新的文献求助10
6秒前
CC发布了新的文献求助10
9秒前
令狐新竹完成签到 ,获得积分10
10秒前
叶子完成签到,获得积分10
11秒前
EarendilK发布了新的文献求助10
11秒前
落寞丹萱完成签到,获得积分10
11秒前
12秒前
熠耀完成签到,获得积分10
16秒前
CC完成签到,获得积分10
16秒前
16秒前
崔志玥发布了新的文献求助10
17秒前
可爱凡波完成签到,获得积分10
18秒前
夏天的倒影完成签到,获得积分10
20秒前
思源应助紫色奶萨采纳,获得10
22秒前
迷人若冰发布了新的文献求助10
22秒前
领导范儿应助雨桐采纳,获得10
24秒前
25秒前
yxu发布了新的文献求助10
26秒前
学医的小胖子完成签到 ,获得积分10
28秒前
28秒前
隐形曼青应助馥郁采纳,获得10
29秒前
Don完成签到 ,获得积分10
29秒前
32秒前
淡淡梦容发布了新的文献求助10
33秒前
八九发布了新的文献求助10
34秒前
马柒柒发布了新的文献求助10
34秒前
迷人若冰完成签到,获得积分10
36秒前
36秒前
赘婿应助puijin采纳,获得30
37秒前
积极鱼完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775662
求助须知:如何正确求助?哪些是违规求助? 3321243
关于积分的说明 10204340
捐赠科研通 3036109
什么是DOI,文献DOI怎么找? 1666001
邀请新用户注册赠送积分活动 797244
科研通“疑难数据库(出版商)”最低求助积分说明 757766