Bearing Fault Diagnosis Method Based on Adversarial Transfer Learning for Imbalanced Samples of Portal Crane Drive Motor

计算机科学 断层(地质) 方位(导航) 人工智能 对抗制 特征(语言学) 特征向量 模式识别(心理学) 工程类 语言学 哲学 地震学 地质学
作者
Yongsheng Yang,Zhongtao He,Haiqing Yao,Yifei Wang,Junkai Feng,Yuzhen Wu
出处
期刊:Actuators [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 466-466
标识
DOI:10.3390/act12120466
摘要

Due to their unique structural design, portal cranes have been extensively utilized in bulk cargo and container terminals. The bearing fault of their drive motors is a critical issue that significantly impacts their operational efficiency. Moreover, the problem of imbalanced fault samples has a more pronounced influence on the application of novel fault diagnosis methods. To address this, the paper presents a new method called bidirectional gated recurrent domain adversarial transfer learning (BRDATL), specifically designed for imbalanced samples from portal cranes’ drive motor bearings. Initially, a bidirectional gated recurrent unit (Bi-GRU) is used as a feature extractor within the network to comprehensively extract features from both source and target domains. Building on this, a new Correlation Maximum Mean Discrepancy (CAMMD) method, integrating both Correlation Alignment (CORAL) and Maximum Mean Discrepancy (MMD), is proposed to guide the feature generator in providing domain-invariant features. Considering the real-time data characteristics of portal crane drive motor bearings, we adjusted the CWRU and XJTU-SY bearing datasets and conducted comparative experiments. The experimental results show that the accuracy of the proposed method is up to 99.5%, which is obviously higher than other methods. The presented fault diagnosis model provides a practical and theoretical framework for diagnosing faults in portal cranes’ field operation environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zachary完成签到,获得积分10
1秒前
海阔天空发布了新的文献求助10
2秒前
迅速的孤菱完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
冬烜完成签到 ,获得积分10
3秒前
Zard发布了新的文献求助10
4秒前
liu123456完成签到,获得积分10
4秒前
屎味烤地瓜完成签到,获得积分10
4秒前
852应助荒野风采纳,获得10
5秒前
8秒前
芳泽发布了新的文献求助10
8秒前
su发布了新的文献求助10
9秒前
Milou完成签到,获得积分10
10秒前
10秒前
老阎应助科研通管家采纳,获得30
10秒前
orixero应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
科研白菜白完成签到,获得积分10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得20
11秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
科研乞丐应助科研通管家采纳,获得20
11秒前
jjj应助科研通管家采纳,获得20
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得30
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
zpt完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066