Bearing Fault Diagnosis Method Based on Adversarial Transfer Learning for Imbalanced Samples of Portal Crane Drive Motor

计算机科学 断层(地质) 方位(导航) 人工智能 对抗制 特征(语言学) 特征向量 模式识别(心理学) 工程类 语言学 地质学 哲学 地震学
作者
Yongsheng Yang,Zhongtao He,Haiqing Yao,Yifei Wang,Junkai Feng,Yuzhen Wu
出处
期刊:Actuators [MDPI AG]
卷期号:12 (12): 466-466
标识
DOI:10.3390/act12120466
摘要

Due to their unique structural design, portal cranes have been extensively utilized in bulk cargo and container terminals. The bearing fault of their drive motors is a critical issue that significantly impacts their operational efficiency. Moreover, the problem of imbalanced fault samples has a more pronounced influence on the application of novel fault diagnosis methods. To address this, the paper presents a new method called bidirectional gated recurrent domain adversarial transfer learning (BRDATL), specifically designed for imbalanced samples from portal cranes’ drive motor bearings. Initially, a bidirectional gated recurrent unit (Bi-GRU) is used as a feature extractor within the network to comprehensively extract features from both source and target domains. Building on this, a new Correlation Maximum Mean Discrepancy (CAMMD) method, integrating both Correlation Alignment (CORAL) and Maximum Mean Discrepancy (MMD), is proposed to guide the feature generator in providing domain-invariant features. Considering the real-time data characteristics of portal crane drive motor bearings, we adjusted the CWRU and XJTU-SY bearing datasets and conducted comparative experiments. The experimental results show that the accuracy of the proposed method is up to 99.5%, which is obviously higher than other methods. The presented fault diagnosis model provides a practical and theoretical framework for diagnosing faults in portal cranes’ field operation environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
阿荣撒发布了新的文献求助20
2秒前
3秒前
意意发布了新的文献求助10
3秒前
xutong de完成签到,获得积分10
4秒前
5秒前
SciGPT应助科研通管家采纳,获得50
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
6秒前
zxz应助科研通管家采纳,获得20
6秒前
华仔应助科研通管家采纳,获得10
6秒前
waaan发布了新的文献求助30
6秒前
昌昌昌发布了新的文献求助10
6秒前
CC完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
无奈的浩宇完成签到,获得积分10
9秒前
10秒前
搜集达人应助二指弹采纳,获得10
11秒前
汉堡包应助pp陶采纳,获得10
12秒前
12秒前
凯特发布了新的文献求助10
13秒前
罗舒发布了新的文献求助10
13秒前
15秒前
李晶完成签到,获得积分10
16秒前
吾皇完成签到 ,获得积分10
16秒前
Lily发布了新的文献求助10
17秒前
18秒前
赘婿应助酷酷妙梦采纳,获得10
19秒前
dlfshr发布了新的文献求助10
21秒前
22秒前
22秒前
8R60d8应助斯文谷秋采纳,获得10
22秒前
一一应助多情的夜安采纳,获得10
23秒前
二指弹发布了新的文献求助10
23秒前
芋圆完成签到,获得积分10
23秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217943
求助须知:如何正确求助?哪些是违规求助? 2867189
关于积分的说明 8155138
捐赠科研通 2533994
什么是DOI,文献DOI怎么找? 1366730
科研通“疑难数据库(出版商)”最低求助积分说明 644865
邀请新用户注册赠送积分活动 617845