Bearing Fault Diagnosis Method Based on Adversarial Transfer Learning for Imbalanced Samples of Portal Crane Drive Motor

计算机科学 断层(地质) 方位(导航) 人工智能 对抗制 特征(语言学) 特征向量 模式识别(心理学) 工程类 语言学 哲学 地震学 地质学
作者
Yongsheng Yang,Zhongtao He,Haiqing Yao,Yifei Wang,Junkai Feng,Yuzhen Wu
出处
期刊:Actuators [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 466-466
标识
DOI:10.3390/act12120466
摘要

Due to their unique structural design, portal cranes have been extensively utilized in bulk cargo and container terminals. The bearing fault of their drive motors is a critical issue that significantly impacts their operational efficiency. Moreover, the problem of imbalanced fault samples has a more pronounced influence on the application of novel fault diagnosis methods. To address this, the paper presents a new method called bidirectional gated recurrent domain adversarial transfer learning (BRDATL), specifically designed for imbalanced samples from portal cranes’ drive motor bearings. Initially, a bidirectional gated recurrent unit (Bi-GRU) is used as a feature extractor within the network to comprehensively extract features from both source and target domains. Building on this, a new Correlation Maximum Mean Discrepancy (CAMMD) method, integrating both Correlation Alignment (CORAL) and Maximum Mean Discrepancy (MMD), is proposed to guide the feature generator in providing domain-invariant features. Considering the real-time data characteristics of portal crane drive motor bearings, we adjusted the CWRU and XJTU-SY bearing datasets and conducted comparative experiments. The experimental results show that the accuracy of the proposed method is up to 99.5%, which is obviously higher than other methods. The presented fault diagnosis model provides a practical and theoretical framework for diagnosing faults in portal cranes’ field operation environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
废式脂肪发布了新的文献求助10
2秒前
义气谷兰发布了新的文献求助10
2秒前
2秒前
4秒前
小冰完成签到,获得积分10
4秒前
5秒前
CodeCraft应助shen采纳,获得30
6秒前
7秒前
自觉向秋发布了新的文献求助10
8秒前
自然的汉堡完成签到,获得积分10
9秒前
雪霓裳完成签到 ,获得积分10
9秒前
10秒前
好可一发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
完美世界应助lili采纳,获得10
13秒前
小豆豆应助楼楼楼采纳,获得30
15秒前
ping发布了新的文献求助10
15秒前
Hodlumm发布了新的文献求助10
18秒前
有趣的灵魂完成签到,获得积分10
21秒前
今后应助shen采纳,获得10
22秒前
桐桐应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
26秒前
lennon完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976418
求助须知:如何正确求助?哪些是违规求助? 3520512
关于积分的说明 11203586
捐赠科研通 3257127
什么是DOI,文献DOI怎么找? 1798594
邀请新用户注册赠送积分活动 877804
科研通“疑难数据库(出版商)”最低求助积分说明 806523