清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bearing Fault Diagnosis Method Based on Adversarial Transfer Learning for Imbalanced Samples of Portal Crane Drive Motor

计算机科学 断层(地质) 方位(导航) 人工智能 对抗制 特征(语言学) 特征向量 模式识别(心理学) 工程类 语言学 哲学 地震学 地质学
作者
Yongsheng Yang,Zhongtao He,Haiqing Yao,Yifei Wang,Junkai Feng,Yuzhen Wu
出处
期刊:Actuators [MDPI AG]
卷期号:12 (12): 466-466
标识
DOI:10.3390/act12120466
摘要

Due to their unique structural design, portal cranes have been extensively utilized in bulk cargo and container terminals. The bearing fault of their drive motors is a critical issue that significantly impacts their operational efficiency. Moreover, the problem of imbalanced fault samples has a more pronounced influence on the application of novel fault diagnosis methods. To address this, the paper presents a new method called bidirectional gated recurrent domain adversarial transfer learning (BRDATL), specifically designed for imbalanced samples from portal cranes’ drive motor bearings. Initially, a bidirectional gated recurrent unit (Bi-GRU) is used as a feature extractor within the network to comprehensively extract features from both source and target domains. Building on this, a new Correlation Maximum Mean Discrepancy (CAMMD) method, integrating both Correlation Alignment (CORAL) and Maximum Mean Discrepancy (MMD), is proposed to guide the feature generator in providing domain-invariant features. Considering the real-time data characteristics of portal crane drive motor bearings, we adjusted the CWRU and XJTU-SY bearing datasets and conducted comparative experiments. The experimental results show that the accuracy of the proposed method is up to 99.5%, which is obviously higher than other methods. The presented fault diagnosis model provides a practical and theoretical framework for diagnosing faults in portal cranes’ field operation environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
元宝麻麻发布了新的文献求助10
18秒前
SciGPT应助科研通管家采纳,获得10
19秒前
默默问芙完成签到,获得积分10
21秒前
俊逸的盛男完成签到 ,获得积分10
31秒前
SciGPT应助元宝麻麻采纳,获得10
41秒前
1分钟前
活力的妙之完成签到 ,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
懒得起名字完成签到 ,获得积分10
1分钟前
共享精神应助尊敬的凌晴采纳,获得10
1分钟前
sevenhill完成签到 ,获得积分0
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
Upupgrowth完成签到 ,获得积分10
1分钟前
年轻千愁完成签到 ,获得积分10
1分钟前
1分钟前
Weilu完成签到 ,获得积分10
1分钟前
1分钟前
naki完成签到,获得积分10
2分钟前
HCCha完成签到,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
2分钟前
元宝麻麻完成签到,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
2分钟前
今我来思完成签到 ,获得积分10
2分钟前
小蘑菇应助neptuniar采纳,获得10
3分钟前
甜美的觅荷完成签到,获得积分10
3分钟前
尊敬的凌晴完成签到 ,获得积分10
3分钟前
3分钟前
愤怒的念蕾完成签到,获得积分10
3分钟前
cgs完成签到 ,获得积分10
3分钟前
自由的雅旋完成签到 ,获得积分10
3分钟前
练得身形似鹤形完成签到 ,获得积分10
3分钟前
悠树里完成签到,获得积分10
4分钟前
gwbk完成签到,获得积分10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
neptuniar发布了新的文献求助10
4分钟前
雪花完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299