计算机科学
断层(地质)
方位(导航)
人工智能
对抗制
特征(语言学)
特征向量
模式识别(心理学)
工程类
语言学
地质学
哲学
地震学
作者
Yongsheng Yang,Zhongtao He,Haiqing Yao,Yifei Wang,Junkai Feng,Yuzhen Wu
出处
期刊:Actuators
[MDPI AG]
日期:2023-12-15
卷期号:12 (12): 466-466
摘要
Due to their unique structural design, portal cranes have been extensively utilized in bulk cargo and container terminals. The bearing fault of their drive motors is a critical issue that significantly impacts their operational efficiency. Moreover, the problem of imbalanced fault samples has a more pronounced influence on the application of novel fault diagnosis methods. To address this, the paper presents a new method called bidirectional gated recurrent domain adversarial transfer learning (BRDATL), specifically designed for imbalanced samples from portal cranes’ drive motor bearings. Initially, a bidirectional gated recurrent unit (Bi-GRU) is used as a feature extractor within the network to comprehensively extract features from both source and target domains. Building on this, a new Correlation Maximum Mean Discrepancy (CAMMD) method, integrating both Correlation Alignment (CORAL) and Maximum Mean Discrepancy (MMD), is proposed to guide the feature generator in providing domain-invariant features. Considering the real-time data characteristics of portal crane drive motor bearings, we adjusted the CWRU and XJTU-SY bearing datasets and conducted comparative experiments. The experimental results show that the accuracy of the proposed method is up to 99.5%, which is obviously higher than other methods. The presented fault diagnosis model provides a practical and theoretical framework for diagnosing faults in portal cranes’ field operation environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI