亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bearing Fault Diagnosis Method Based on Adversarial Transfer Learning for Imbalanced Samples of Portal Crane Drive Motor

计算机科学 断层(地质) 方位(导航) 人工智能 对抗制 特征(语言学) 特征向量 模式识别(心理学) 工程类 语言学 哲学 地震学 地质学
作者
Yongsheng Yang,Zhongtao He,Haiqing Yao,Yifei Wang,Junkai Feng,Yuzhen Wu
出处
期刊:Actuators [MDPI AG]
卷期号:12 (12): 466-466
标识
DOI:10.3390/act12120466
摘要

Due to their unique structural design, portal cranes have been extensively utilized in bulk cargo and container terminals. The bearing fault of their drive motors is a critical issue that significantly impacts their operational efficiency. Moreover, the problem of imbalanced fault samples has a more pronounced influence on the application of novel fault diagnosis methods. To address this, the paper presents a new method called bidirectional gated recurrent domain adversarial transfer learning (BRDATL), specifically designed for imbalanced samples from portal cranes’ drive motor bearings. Initially, a bidirectional gated recurrent unit (Bi-GRU) is used as a feature extractor within the network to comprehensively extract features from both source and target domains. Building on this, a new Correlation Maximum Mean Discrepancy (CAMMD) method, integrating both Correlation Alignment (CORAL) and Maximum Mean Discrepancy (MMD), is proposed to guide the feature generator in providing domain-invariant features. Considering the real-time data characteristics of portal crane drive motor bearings, we adjusted the CWRU and XJTU-SY bearing datasets and conducted comparative experiments. The experimental results show that the accuracy of the proposed method is up to 99.5%, which is obviously higher than other methods. The presented fault diagnosis model provides a practical and theoretical framework for diagnosing faults in portal cranes’ field operation environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
慕青应助HYX采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
18秒前
28秒前
liang发布了新的文献求助10
36秒前
HYX完成签到,获得积分10
41秒前
41秒前
HYX发布了新的文献求助10
46秒前
坚定闭月发布了新的文献求助10
50秒前
56秒前
传奇3应助liang采纳,获得10
59秒前
ucas大菠萝完成签到,获得积分10
1分钟前
一介书生完成签到,获得积分10
1分钟前
loser完成签到 ,获得积分10
1分钟前
坚定闭月完成签到,获得积分10
1分钟前
zeice完成签到 ,获得积分10
1分钟前
zz完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助陶醉的难破采纳,获得10
1分钟前
1分钟前
AliEmbark完成签到,获得积分10
1分钟前
orion完成签到,获得积分20
1分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
paradox完成签到 ,获得积分10
2分钟前
orion发布了新的文献求助10
2分钟前
青阳完成签到,获得积分10
3分钟前
3分钟前
MouLi完成签到,获得积分10
3分钟前
3分钟前
3分钟前
kukudou2完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639622
求助须知:如何正确求助?哪些是违规求助? 4749370
关于积分的说明 15006949
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563883
邀请新用户注册赠送积分活动 1522782
关于科研通互助平台的介绍 1482480