PMFN-SSL: Self-supervised learning-based progressive multimodal fusion network for cancer diagnosis and prognosis

特征提取 预处理器 人工智能 计算机科学 模式识别(心理学) 数据预处理 机器学习 数据挖掘
作者
L. K. Li,Hudan Pan,Yong Liang,Mingwen Shao,Shengli Xie,Shanghui Lu,Shuilin Liao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111502-111502 被引量:16
标识
DOI:10.1016/j.knosys.2024.111502
摘要

The integration of digital pathology images and genetic data is a developing field in cancer research, presenting potential opportunities for predicting survival and classifying grades through multiple source data. However, obtaining comprehensive annotations proves challenging in practical medical settings, and the extraction of features from high-resolution pathology images is hindered by inter-domain disparities. Current data fusion methods ignore the spatio-temporal incongruity among multimodal data. To address the above challenges, we propose a novel self-supervised transformer-based pathology feature extraction strategy, and construct an interpretable Progressive Multimodal Fusion Network (PMFN-SSL) for cancer diagnosis and prognosis. Our contributions are mainly divided into three aspects. Firstly, we propose a joint patch sampling strategy based on the information entropy and HSV components of an image, which reduces the demand for sample annotations and avoid image quality degradation caused by manual contamination. Secondly, a self-supervised transformer-based feature extraction module for pathology images is proposed and innovatively leverages partially weakly supervised labeling to align the extracted features with downstream medical tasks. Further, we improve the existing multimodal feature fusion model with an progressive fusion strategy to reduce the inconsistency between multimodal data due to differences in collection of temporal and spatial. Abundant ablation and comparison experiments demonstrate that the proposed data preprocessing method and multimodal fusion paradigm strengthen the quality of feature extraction and improve the prediction based on real cancer grading and prognosis. Code and trained models are made available at: https://github.com/Mercuriiio/PMFN-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安卓锋发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
小小邹发布了新的文献求助10
1秒前
悦铭完成签到,获得积分10
1秒前
1秒前
非而者厚发布了新的文献求助10
1秒前
1秒前
ChemNiko发布了新的文献求助10
1秒前
chie发布了新的文献求助10
2秒前
非而者厚发布了新的文献求助10
2秒前
非而者厚发布了新的文献求助10
2秒前
know发布了新的文献求助10
2秒前
非而者厚发布了新的文献求助50
2秒前
非而者厚发布了新的文献求助10
3秒前
非而者厚发布了新的文献求助10
3秒前
非而者厚发布了新的文献求助10
3秒前
无题完成签到,获得积分10
3秒前
非而者厚发布了新的文献求助10
3秒前
非而者厚发布了新的文献求助10
3秒前
Lucas应助qinqinwy采纳,获得10
3秒前
非而者厚发布了新的文献求助10
3秒前
非而者厚发布了新的文献求助10
3秒前
三点半完成签到,获得积分10
3秒前
非而者厚发布了新的文献求助10
3秒前
非而者厚发布了新的文献求助10
3秒前
非而者厚发布了新的文献求助10
3秒前
留白完成签到,获得积分10
3秒前
非而者厚发布了新的文献求助10
3秒前
科研通AI2S应助Iridesent0v0采纳,获得10
3秒前
fei应助琳琳采纳,获得50
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715