已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PMFN-SSL: Self-supervised learning-based progressive multimodal fusion network for cancer diagnosis and prognosis

特征提取 预处理器 人工智能 计算机科学 模式识别(心理学) 数据预处理 机器学习 数据挖掘
作者
L. K. Li,Hudan Pan,Yong Liang,Mingwen Shao,Shengli Xie,Shanghui Lu,Shuilin Liao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111502-111502 被引量:13
标识
DOI:10.1016/j.knosys.2024.111502
摘要

The integration of digital pathology images and genetic data is a developing field in cancer research, presenting potential opportunities for predicting survival and classifying grades through multiple source data. However, obtaining comprehensive annotations proves challenging in practical medical settings, and the extraction of features from high-resolution pathology images is hindered by inter-domain disparities. Current data fusion methods ignore the spatio-temporal incongruity among multimodal data. To address the above challenges, we propose a novel self-supervised transformer-based pathology feature extraction strategy, and construct an interpretable Progressive Multimodal Fusion Network (PMFN-SSL) for cancer diagnosis and prognosis. Our contributions are mainly divided into three aspects. Firstly, we propose a joint patch sampling strategy based on the information entropy and HSV components of an image, which reduces the demand for sample annotations and avoid image quality degradation caused by manual contamination. Secondly, a self-supervised transformer-based feature extraction module for pathology images is proposed and innovatively leverages partially weakly supervised labeling to align the extracted features with downstream medical tasks. Further, we improve the existing multimodal feature fusion model with an progressive fusion strategy to reduce the inconsistency between multimodal data due to differences in collection of temporal and spatial. Abundant ablation and comparison experiments demonstrate that the proposed data preprocessing method and multimodal fusion paradigm strengthen the quality of feature extraction and improve the prediction based on real cancer grading and prognosis. Code and trained models are made available at: https://github.com/Mercuriiio/PMFN-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bkagyin应助什么虾仁蛋挞采纳,获得10
1秒前
Battery应助萌酱采纳,获得10
1秒前
2秒前
4秒前
5秒前
丘比特应助mingyu采纳,获得10
5秒前
saf完成签到,获得积分10
6秒前
领导范儿应助冷静青文采纳,获得10
6秒前
nole发布了新的文献求助10
6秒前
6秒前
赘婿应助跳跃的浩阑采纳,获得10
7秒前
8秒前
浮游应助执行正义采纳,获得10
8秒前
毅诚菌发布了新的文献求助10
9秒前
Shueason完成签到,获得积分10
11秒前
12秒前
芹菜完成签到 ,获得积分10
12秒前
XUNAN完成签到 ,获得积分10
13秒前
星辰大海应助隐形的烧鹅采纳,获得10
13秒前
13秒前
科研通AI6应助小阿发采纳,获得10
14秒前
可乐鲨鱼翅关注了科研通微信公众号
18秒前
18秒前
18秒前
欣慰立轩发布了新的文献求助10
18秒前
lwl完成签到,获得积分10
18秒前
wuyaRY发布了新的文献求助10
19秒前
今后应助毅诚菌采纳,获得10
19秒前
20秒前
黎明发布了新的文献求助10
22秒前
23秒前
朱建军发布了新的文献求助10
23秒前
24秒前
maher应助lll采纳,获得10
25秒前
25秒前
25秒前
跳跳虎发布了新的文献求助30
26秒前
虚心的绝施完成签到 ,获得积分10
27秒前
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449335
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263727
捐赠科研通 4480534
什么是DOI,文献DOI怎么找? 2454469
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1421016