PMFN-SSL: Self-supervised learning-based progressive multimodal fusion network for cancer diagnosis and prognosis

特征提取 预处理器 人工智能 计算机科学 模式识别(心理学) 数据预处理 机器学习 数据挖掘
作者
L. K. Li,Hudan Pan,Yong Liang,Mingwen Shao,Shengli Xie,Shanghui Lu,Shuilin Liao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:289: 111502-111502 被引量:11
标识
DOI:10.1016/j.knosys.2024.111502
摘要

The integration of digital pathology images and genetic data is a developing field in cancer research, presenting potential opportunities for predicting survival and classifying grades through multiple source data. However, obtaining comprehensive annotations proves challenging in practical medical settings, and the extraction of features from high-resolution pathology images is hindered by inter-domain disparities. Current data fusion methods ignore the spatio-temporal incongruity among multimodal data. To address the above challenges, we propose a novel self-supervised transformer-based pathology feature extraction strategy, and construct an interpretable Progressive Multimodal Fusion Network (PMFN-SSL) for cancer diagnosis and prognosis. Our contributions are mainly divided into three aspects. Firstly, we propose a joint patch sampling strategy based on the information entropy and HSV components of an image, which reduces the demand for sample annotations and avoid image quality degradation caused by manual contamination. Secondly, a self-supervised transformer-based feature extraction module for pathology images is proposed and innovatively leverages partially weakly supervised labeling to align the extracted features with downstream medical tasks. Further, we improve the existing multimodal feature fusion model with an progressive fusion strategy to reduce the inconsistency between multimodal data due to differences in collection of temporal and spatial. Abundant ablation and comparison experiments demonstrate that the proposed data preprocessing method and multimodal fusion paradigm strengthen the quality of feature extraction and improve the prediction based on real cancer grading and prognosis. Code and trained models are made available at: https://github.com/Mercuriiio/PMFN-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
invisiable完成签到,获得积分10
刚刚
马凤杰发布了新的文献求助10
刚刚
liii发布了新的文献求助10
刚刚
bkagyin应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
川川完成签到,获得积分10
2秒前
2秒前
3秒前
真实的火车完成签到,获得积分10
3秒前
方东发布了新的文献求助10
3秒前
3秒前
4秒前
孙明浩发布了新的文献求助30
4秒前
梁业松发布了新的文献求助10
4秒前
科研通AI6应助qimingran采纳,获得10
5秒前
所所应助moreorless_zjh采纳,获得10
5秒前
薛wen晶发布了新的文献求助20
5秒前
6秒前
neverlost6发布了新的文献求助10
7秒前
7秒前
Ustinian发布了新的文献求助10
8秒前
嗨喔发布了新的文献求助10
8秒前
张敬轩劝你不要读博关注了科研通微信公众号
8秒前
8秒前
华仔应助多多多采纳,获得10
8秒前
星辰大海应助兔兔要睡觉采纳,获得10
9秒前
9秒前
搜集达人应助洪世贤采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
友好的储发布了新的文献求助10
9秒前
无糖零脂发布了新的文献求助10
9秒前
9秒前
种草匠完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933105
求助须知:如何正确求助?哪些是违规求助? 4201461
关于积分的说明 13052835
捐赠科研通 3975404
什么是DOI,文献DOI怎么找? 2178354
邀请新用户注册赠送积分活动 1194774
关于科研通互助平台的介绍 1106106