PMFN-SSL: Self-supervised learning-based progressive multimodal fusion network for cancer diagnosis and prognosis

特征提取 预处理器 人工智能 计算机科学 模式识别(心理学) 数据预处理 机器学习 数据挖掘
作者
L. K. Li,Hudan Pan,Yong Liang,Mingwen Shao,Shengli Xie,Shanghui Lu,Shuilin Liao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111502-111502 被引量:5
标识
DOI:10.1016/j.knosys.2024.111502
摘要

The integration of digital pathology images and genetic data is a developing field in cancer research, presenting potential opportunities for predicting survival and classifying grades through multiple source data. However, obtaining comprehensive annotations proves challenging in practical medical settings, and the extraction of features from high-resolution pathology images is hindered by inter-domain disparities. Current data fusion methods ignore the spatio-temporal incongruity among multimodal data. To address the above challenges, we propose a novel self-supervised transformer-based pathology feature extraction strategy, and construct an interpretable Progressive Multimodal Fusion Network (PMFN-SSL) for cancer diagnosis and prognosis. Our contributions are mainly divided into three aspects. Firstly, we propose a joint patch sampling strategy based on the information entropy and HSV components of an image, which reduces the demand for sample annotations and avoid image quality degradation caused by manual contamination. Secondly, a self-supervised transformer-based feature extraction module for pathology images is proposed and innovatively leverages partially weakly supervised labeling to align the extracted features with downstream medical tasks. Further, we improve the existing multimodal feature fusion model with an progressive fusion strategy to reduce the inconsistency between multimodal data due to differences in collection of temporal and spatial. Abundant ablation and comparison experiments demonstrate that the proposed data preprocessing method and multimodal fusion paradigm strengthen the quality of feature extraction and improve the prediction based on real cancer grading and prognosis. Code and trained models are made available at: https://github.com/Mercuriiio/PMFN-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可达鸭发布了新的文献求助10
1秒前
1秒前
liuying2完成签到,获得积分10
2秒前
2秒前
liuying2发布了新的文献求助10
5秒前
5秒前
8秒前
9秒前
11秒前
11秒前
SilentRP发布了新的文献求助30
12秒前
12秒前
hhh发布了新的文献求助10
13秒前
脑洞疼应助liuying2采纳,获得10
13秒前
Rational发布了新的文献求助10
14秒前
发财小鱼完成签到 ,获得积分10
14秒前
俭朴涫发布了新的文献求助10
15秒前
msy发布了新的文献求助30
15秒前
16秒前
16秒前
hh发布了新的文献求助10
17秒前
17秒前
Orange应助ZZDXXX采纳,获得10
18秒前
aaaaa发布了新的文献求助10
19秒前
SilentRP完成签到,获得积分10
19秒前
hhh关闭了hhh文献求助
20秒前
兴奋新烟完成签到,获得积分20
20秒前
HXH完成签到,获得积分10
20秒前
21秒前
小向发布了新的文献求助10
21秒前
auggy发布了新的文献求助10
22秒前
24秒前
cong315发布了新的文献求助10
25秒前
liman发布了新的文献求助10
25秒前
乐多完成签到,获得积分10
26秒前
27秒前
kk发布了新的文献求助10
27秒前
wwc应助hh采纳,获得10
28秒前
msy完成签到,获得积分10
28秒前
小马甲应助justin采纳,获得30
28秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329635
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594779
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443715
科研通“疑难数据库(出版商)”最低求助积分说明 668827
邀请新用户注册赠送积分活动 656261