PMFN-SSL: Self-supervised learning-based progressive multimodal fusion network for cancer diagnosis and prognosis

特征提取 预处理器 人工智能 计算机科学 模式识别(心理学) 数据预处理 机器学习 数据挖掘
作者
L. K. Li,Hudan Pan,Yong Liang,Mingwen Shao,Shengli Xie,Shanghui Lu,Shuilin Liao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111502-111502 被引量:5
标识
DOI:10.1016/j.knosys.2024.111502
摘要

The integration of digital pathology images and genetic data is a developing field in cancer research, presenting potential opportunities for predicting survival and classifying grades through multiple source data. However, obtaining comprehensive annotations proves challenging in practical medical settings, and the extraction of features from high-resolution pathology images is hindered by inter-domain disparities. Current data fusion methods ignore the spatio-temporal incongruity among multimodal data. To address the above challenges, we propose a novel self-supervised transformer-based pathology feature extraction strategy, and construct an interpretable Progressive Multimodal Fusion Network (PMFN-SSL) for cancer diagnosis and prognosis. Our contributions are mainly divided into three aspects. Firstly, we propose a joint patch sampling strategy based on the information entropy and HSV components of an image, which reduces the demand for sample annotations and avoid image quality degradation caused by manual contamination. Secondly, a self-supervised transformer-based feature extraction module for pathology images is proposed and innovatively leverages partially weakly supervised labeling to align the extracted features with downstream medical tasks. Further, we improve the existing multimodal feature fusion model with an progressive fusion strategy to reduce the inconsistency between multimodal data due to differences in collection of temporal and spatial. Abundant ablation and comparison experiments demonstrate that the proposed data preprocessing method and multimodal fusion paradigm strengthen the quality of feature extraction and improve the prediction based on real cancer grading and prognosis. Code and trained models are made available at: https://github.com/Mercuriiio/PMFN-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助阳阳采纳,获得10
1秒前
专注秋尽发布了新的文献求助10
2秒前
4秒前
默默的棒棒糖完成签到 ,获得积分10
6秒前
6秒前
SONG关注了科研通微信公众号
6秒前
7秒前
ding应助呆头采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
axin应助科研通管家采纳,获得10
7秒前
terence应助科研通管家采纳,获得30
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
852应助科研通管家采纳,获得10
7秒前
hh应助科研通管家采纳,获得10
7秒前
sun发布了新的文献求助10
8秒前
8秒前
zhu完成签到,获得积分10
8秒前
酷波er应助缚大哥采纳,获得10
9秒前
李健应助明理雨筠采纳,获得10
9秒前
wang发布了新的文献求助10
11秒前
木头人给step_stone的求助进行了留言
11秒前
魏伯安完成签到,获得积分10
12秒前
朴素尔岚发布了新的文献求助10
13秒前
科研通AI5应助nextconnie采纳,获得10
13秒前
务实的犀牛完成签到,获得积分10
14秒前
14秒前
Blue_Pig发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助橙子fy16_采纳,获得10
16秒前
LGJ完成签到,获得积分10
16秒前
wang完成签到,获得积分10
18秒前
19秒前
20秒前
脑洞疼应助Blue_Pig采纳,获得10
22秒前
23秒前
Akim应助危机的尔蝶采纳,获得10
24秒前
SONG发布了新的文献求助50
24秒前
明理雨筠发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849