Convolutional Neural Networks and Volcano Plots: Screening and Prediction of Two-Dimensional Single-Atom Catalysts

卷积神经网络 火山 Atom(片上系统) 催化作用 计算机科学 人工智能 化学 地质学 并行计算 地震学 生物化学
作者
Haoyu Yang,Juanli Zhao,Qiankun Wang,Bin Liu,Wei Luo,Ziqi Sun,Ting Liao
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2402.03876
摘要

Single-atom catalysts (SACs) have emerged as frontiers for catalyzing chemical reactions, yet the diverse combinations of active elements and support materials, the nature of coordination environments, elude traditional methodologies in searching optimal SAC systems with superior catalytic performance. Herein, by integrating multi-branch Convolutional Neural Network (CNN) analysis models to hybrid descriptor based activity volcano plot, 2D SAC system composed of diverse metallic single atoms anchored on six type of 2D supports, including graphitic carbon nitride, nitrogen-doped graphene, graphene with dual-vacancy, black phosphorous, boron nitride, and C2N, are screened for efficient CO2RR. Starting from establishing a correlation map between the adsorption energies of intermediates and diverse electronic and elementary descriptors, sole singular descriptor lost magic to predict catalytic activity. Deep learning method utilizing multi-branch CNN model therefore was employed, using 2D electronic density of states as input to predict adsorption energies. Hybrid-descriptor enveloping both C- and O-types of CO2RR intermediates was introduced to construct volcano plots and limiting potential periodic table, aiming for intuitive screening of catalyst candidates for efficient CO2 reduction to CH4. The eDOS occlusion experiments were performed to unravel individual orbital contribution to adsorption energy. To explore the electronic scale principle governing practical engineering catalytic CO2RR activity, orbitalwise eDOS shifting experiments based on CNN model were employed. The study involves examining the adsorption energy and, consequently, catalytic activities while varying supported single atoms. This work offers a tangible framework to inform both theoretical screening and experimental synthesis, thereby paving the way for systematically designing efficient SACs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
今后应助葛擎苍采纳,获得10
3秒前
5秒前
6秒前
可爱的函函应助张秋雨采纳,获得10
6秒前
科研的打工狗完成签到,获得积分10
7秒前
10秒前
北雨发布了新的文献求助10
12秒前
旷野天完成签到,获得积分10
13秒前
yanglian2003完成签到 ,获得积分10
15秒前
yyauthor发布了新的文献求助20
15秒前
牛奶秋刀鱼完成签到,获得积分10
16秒前
彭于晏应助机智羞花采纳,获得10
17秒前
17秒前
羊羊羊发布了新的文献求助10
19秒前
传奇3应助小娜娜采纳,获得10
19秒前
23秒前
haowu发布了新的文献求助10
23秒前
MoonFlows应助年轻的熊猫采纳,获得20
23秒前
vickeylea完成签到,获得积分10
23秒前
23秒前
LGZ完成签到 ,获得积分0
23秒前
爆米花应助迅速文龙采纳,获得10
26秒前
重要千青完成签到,获得积分10
26秒前
physic完成签到 ,获得积分10
27秒前
27秒前
顾矜应助科研通管家采纳,获得10
28秒前
领导范儿应助科研通管家采纳,获得10
28秒前
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
JamesPei应助科研通管家采纳,获得30
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
机智羞花发布了新的文献求助10
29秒前
31秒前
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919