Abstract Collective motion of organisms is a widespread phenomenon exhibited by many species, most commonly associated with colonial birds and schools of fish. The benefits of schooling behavior vary from defense against predators, increased feeding efficiency, and improved endurance. Schooling motions can be energetically beneficial as schools allow for channeling and vortex-based interactions, creating a less demanding stroke rate to sustain high swimming velocities and increased movement efficiency. Biomimetics is a fast-growing field, and there have been several attempts to quantify the hydrodynamics behind group dynamics and the subsequent benefits of increased maneuverability, which can be applied to unmanned vehicles and devices traveling in a group or swarm-like scenarios. Earlier efforts to understand these phenomena have been composed of physical experimentation and numerical simulations. This literature review examines the existing studies performed to understand the hydrodynamics of group collective motion inspired by schooling habits. Both numerical simulation and physical experimentation are discussed, and the benefits and drawbacks of the two approaches are compared to help future researchers and engineers expand on these models and concepts. This paper also identifies some of the limitations associated with different approaches to studies on fish schooling and suggests potential directions for future work.