STFNet: Self-Supervised Transformer for Infrared and Visible Image Fusion

融合 红外线的 变压器 人工智能 图像融合 计算机视觉 计算机科学 图像(数学) 模式识别(心理学) 物理 工程类 光学 电气工程 电压 语言学 哲学
作者
Qiao Liu,Jiaxiong Pi,Peng Gao,Di Yuan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tetci.2024.3352490
摘要

Most of the existing infrared and visible image fusion algorithms rely on hand-designed or simple convolution-based fusion strategies. However, these methods cannot explicitly model the contextual relationships between infrared and visible images, thereby limiting their robustness. To this end, we propose a novel Transformer-based feature fusion network for robust image fusion that can explicitly model the contextual relationship between the two modalities. Specifically, our fusion network consists of a detail self-attention module to capture the detail information of each modality and a saliency cross attention module to model contextual relationships between the two modalities. Since these two attention modules can obtain the pixel-level global dependencies, the fusion network has a powerful detail representation ability which is critical to the pixel-level image generation task. Moreover, we propose a deformable convolution-based feature align network to address the slight misaligned problem of the source image pairs, which is beneficial for reducing artifacts. Since there is no ground-truth for the infrared and visible image fusion task, it is essential to train the proposed method in a self-supervised manner. Therefore, we design a self-supervised multi-task loss which contains a structure similarity loss, a frequency consistency loss, and a Fourier spectral consistency loss to train the proposed algorithm. Extensive experimental results on four image fusion benchmarks show that our algorithm obtains competitive performance compared to state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shino发布了新的文献求助10
刚刚
刚刚
学术z完成签到,获得积分10
1秒前
晓军完成签到,获得积分10
1秒前
研友_rLmNXn完成签到,获得积分10
1秒前
开朗的睫毛膏完成签到,获得积分10
1秒前
1秒前
2秒前
语黛完成签到,获得积分10
2秒前
完美世界应助enen采纳,获得10
2秒前
3秒前
Jean发布了新的文献求助10
3秒前
小羊发布了新的文献求助30
3秒前
3秒前
木质素爱好者完成签到,获得积分10
4秒前
Notdodead应助甜甜的高跟鞋采纳,获得20
4秒前
5秒前
Giroro_roro发布了新的文献求助10
6秒前
6秒前
WQQ完成签到,获得积分10
6秒前
可爱海雪发布了新的文献求助30
6秒前
AL完成签到,获得积分10
7秒前
7秒前
负责水风完成签到,获得积分10
7秒前
jl完成签到 ,获得积分10
7秒前
8秒前
10秒前
tree发布了新的文献求助30
10秒前
李爱国应助Zayne采纳,获得10
10秒前
d1111s完成签到,获得积分10
11秒前
感动水杯完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
小二郎应助负责水风采纳,获得10
11秒前
11秒前
过时的机器猫完成签到,获得积分10
11秒前
12秒前
Xk发布了新的文献求助10
13秒前
秦琳昕完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650