STFNet: Self-Supervised Transformer for Infrared and Visible Image Fusion

融合 红外线的 变压器 人工智能 图像融合 计算机视觉 计算机科学 图像(数学) 模式识别(心理学) 物理 工程类 光学 电气工程 电压 语言学 哲学
作者
Qiao Liu,Jiaxiong Pi,Peng Gao,Di Yuan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tetci.2024.3352490
摘要

Most of the existing infrared and visible image fusion algorithms rely on hand-designed or simple convolution-based fusion strategies. However, these methods cannot explicitly model the contextual relationships between infrared and visible images, thereby limiting their robustness. To this end, we propose a novel Transformer-based feature fusion network for robust image fusion that can explicitly model the contextual relationship between the two modalities. Specifically, our fusion network consists of a detail self-attention module to capture the detail information of each modality and a saliency cross attention module to model contextual relationships between the two modalities. Since these two attention modules can obtain the pixel-level global dependencies, the fusion network has a powerful detail representation ability which is critical to the pixel-level image generation task. Moreover, we propose a deformable convolution-based feature align network to address the slight misaligned problem of the source image pairs, which is beneficial for reducing artifacts. Since there is no ground-truth for the infrared and visible image fusion task, it is essential to train the proposed method in a self-supervised manner. Therefore, we design a self-supervised multi-task loss which contains a structure similarity loss, a frequency consistency loss, and a Fourier spectral consistency loss to train the proposed algorithm. Extensive experimental results on four image fusion benchmarks show that our algorithm obtains competitive performance compared to state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随机完成签到,获得积分10
刚刚
Hezzzz完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
木樨完成签到,获得积分10
1秒前
CyndiaSUN完成签到,获得积分10
1秒前
1秒前
elf完成签到,获得积分10
2秒前
汤姆猫发布了新的文献求助10
2秒前
一包辣条完成签到,获得积分10
2秒前
mika910完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
daSB完成签到,获得积分20
4秒前
赵小胖完成签到,获得积分10
4秒前
自觉石头发布了新的文献求助10
4秒前
4秒前
5秒前
bluekids发布了新的文献求助50
5秒前
LDL完成签到,获得积分10
6秒前
怕孤独的忆南完成签到,获得积分10
6秒前
热情醉山完成签到,获得积分10
6秒前
6秒前
星河梦枕完成签到,获得积分10
8秒前
PHHHH发布了新的文献求助10
9秒前
9秒前
暖暖完成签到,获得积分10
9秒前
9秒前
9秒前
张天完成签到,获得积分10
9秒前
星辰大海应助汤姆猫采纳,获得10
9秒前
10秒前
zsfxqq完成签到 ,获得积分10
10秒前
SciGPT应助点心采纳,获得10
10秒前
11秒前
Hou发布了新的文献求助20
11秒前
yjjin发布了新的文献求助10
11秒前
科目三应助菠萝贝采纳,获得10
12秒前
Zero_榊啸号完成签到,获得积分10
12秒前
13秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585147
求助须知:如何正确求助?哪些是违规求助? 4668950
关于积分的说明 14773671
捐赠科研通 4616972
什么是DOI,文献DOI怎么找? 2530364
邀请新用户注册赠送积分活动 1499158
关于科研通互助平台的介绍 1467659