STFNet: Self-Supervised Transformer for Infrared and Visible Image Fusion

融合 红外线的 变压器 人工智能 图像融合 计算机视觉 计算机科学 图像(数学) 模式识别(心理学) 物理 工程类 光学 电气工程 电压 语言学 哲学
作者
Qiao Liu,Jiaxiong Pi,Peng Gao,Di Yuan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tetci.2024.3352490
摘要

Most of the existing infrared and visible image fusion algorithms rely on hand-designed or simple convolution-based fusion strategies. However, these methods cannot explicitly model the contextual relationships between infrared and visible images, thereby limiting their robustness. To this end, we propose a novel Transformer-based feature fusion network for robust image fusion that can explicitly model the contextual relationship between the two modalities. Specifically, our fusion network consists of a detail self-attention module to capture the detail information of each modality and a saliency cross attention module to model contextual relationships between the two modalities. Since these two attention modules can obtain the pixel-level global dependencies, the fusion network has a powerful detail representation ability which is critical to the pixel-level image generation task. Moreover, we propose a deformable convolution-based feature align network to address the slight misaligned problem of the source image pairs, which is beneficial for reducing artifacts. Since there is no ground-truth for the infrared and visible image fusion task, it is essential to train the proposed method in a self-supervised manner. Therefore, we design a self-supervised multi-task loss which contains a structure similarity loss, a frequency consistency loss, and a Fourier spectral consistency loss to train the proposed algorithm. Extensive experimental results on four image fusion benchmarks show that our algorithm obtains competitive performance compared to state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yyy完成签到 ,获得积分10
2秒前
朝昭照完成签到,获得积分10
2秒前
3秒前
6秒前
朝昭照发布了新的文献求助10
6秒前
6秒前
天啦噜完成签到 ,获得积分10
6秒前
圆圆小悦完成签到,获得积分10
7秒前
minmin959完成签到,获得积分10
8秒前
8秒前
无畏阿玲发布了新的文献求助10
9秒前
11秒前
xzz发布了新的文献求助10
11秒前
圆圆小悦发布了新的文献求助10
13秒前
斯文败类应助痴情的绮菱采纳,获得10
14秒前
66完成签到,获得积分10
14秒前
顾矜应助你好采纳,获得30
15秒前
唐同学发布了新的文献求助10
17秒前
受伤松鼠完成签到 ,获得积分10
18秒前
驿寄梅花发布了新的文献求助10
19秒前
tony发布了新的文献求助10
20秒前
xzz完成签到,获得积分10
21秒前
fly发布了新的文献求助10
22秒前
23秒前
Jasper应助梦幻采纳,获得10
24秒前
24秒前
糟糕的道罡完成签到,获得积分10
24秒前
英俊的铭应助驿寄梅花采纳,获得10
26秒前
27秒前
27秒前
一年两篇Sci完成签到,获得积分10
27秒前
饼藏完成签到,获得积分10
28秒前
小魏同学完成签到,获得积分10
30秒前
30秒前
32秒前
韦觅松发布了新的文献求助10
32秒前
Akim应助www采纳,获得10
33秒前
33秒前
Rainbow_sea发布了新的文献求助30
33秒前
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891903
关于积分的说明 8269128
捐赠科研通 2559920
什么是DOI,文献DOI怎么找? 1388768
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798