Recent advances in the electrochemical production of hydrogen peroxide

过氧化氢 环境友好型 电化学 析氧 工艺工程 环境科学 化学 生化工程 纳米技术 材料科学 有机化学 电极 工程类 生态学 生物 物理化学
作者
Nishu Dhanda,Yogesh Kumar Panday,Sudesh Kumar
出处
期刊:Electrochimica Acta [Elsevier BV]
卷期号:: 143872-143872 被引量:9
标识
DOI:10.1016/j.electacta.2024.143872
摘要

Hydrogen peroxide (H2O2) is an innovative and environmentally friendly oxidant that finds wide-ranging applications across multiple industries. In the past, H2O2 production predominantly relied on the anthraquinone method, which had drawbacks such as the generation of organic waste and the requirement for energy-intensive reactions. A cheap, efficient, and sustainable way of producing H2O2 may be achieved through the redox reaction between oxygen and water. On both small and large scales, the electrosynthesis of H2O2 is practical and affordable. In recent years, it has been thought that the energy-intensive anthraquinone process may be replaced by the electrochemical synthesis of H2O2 via the two-electron oxygen reduction reaction (ORR) route. To eliminate the organic pollutants found in drinking water and industrial effluent, highly effective hydrogen peroxide (H2O2) must be produced electrochemically using gas diffusion electrodes (GDEs). Compared to other carbonaceous cathodes, the GDEs as cathodic electrocatalysts demonstrate greater cost-effectiveness, lower energy consumption, and higher oxygen utilization efficiency for the formation of H2O2. A promising alternative for enabling the growth of sustainable economics in the W&W sector is microbial electrochemical systems (MESs) that create H2O2. To enhance the efficiency and predictability of H2O2 production in MESs, a machine-learning approach was adopted, incorporating a meta-learning methodology to forecast the generation rate of H2O2 in MES based on the seven input variables, comprising several design and operational parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
刚刚
grzzz完成签到,获得积分10
2秒前
always完成签到,获得积分10
5秒前
wangwangwang发布了新的文献求助10
5秒前
TIGun发布了新的文献求助10
6秒前
7秒前
梁小鱼发布了新的文献求助10
7秒前
8秒前
懂事的梦游者完成签到,获得积分10
9秒前
10秒前
13秒前
Hello应助琳儿真的很瘦了采纳,获得10
13秒前
努力的学发布了新的文献求助10
13秒前
留白关注了科研通微信公众号
14秒前
15秒前
出门见喜发布了新的文献求助10
15秒前
希卡利是光完成签到,获得积分10
17秒前
18秒前
19秒前
llyyz应助绚丽多彩的灰采纳,获得10
19秒前
星辰大海应助石会发采纳,获得10
20秒前
20秒前
小兰发布了新的文献求助10
21秒前
素的素的完成签到,获得积分10
21秒前
21秒前
科研通AI5应助出门见喜采纳,获得10
21秒前
zza完成签到,获得积分10
22秒前
领导范儿应助wangwangwang采纳,获得10
22秒前
22秒前
22秒前
四糸乃发布了新的文献求助10
22秒前
斯塔克发布了新的文献求助10
23秒前
24秒前
知不道完成签到,获得积分10
24秒前
24秒前
26秒前
CipherSage应助清脆松采纳,获得10
26秒前
333水完成签到,获得积分10
27秒前
FashionBoy应助风吹不到海湾采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738035
求助须知:如何正确求助?哪些是违规求助? 3281550
关于积分的说明 10025988
捐赠科研通 2998302
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782660
科研通“疑难数据库(出版商)”最低求助积分说明 749882