A Rapid and Convenient Spatiotemporal Calibration Method of Roadside Sensors Using Floating Connected and Automated Vehicle Data

校准 计算机科学 实时计算 数学 统计
作者
Cong Zhao,Yupeng Shi,Yuchuan Du,Shengchuan Jiang,Yuxiong Ji,Xiangmo Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 10953-10966 被引量:5
标识
DOI:10.1109/tits.2024.3366758
摘要

Cameras, millimeter-wave radars, and lidars are widely deployed on smart roads to obtain personalized vehicle trajectories for advanced traffic control and risk avoidance. However, these asynchronous roadside sensors need to be spatiotemporally calibrated accurately before they are put into service. Traditional manual manipulation methods are inefficient and will affect traffic operation and safety. A rapid and convenient method has become essential under the trend that large amounts of roadside sensors need to be tested and calibrated frequently. As more and more connected and automated vehicles (CAVs) flood the smart roads, this paper proposes a novel spatiotemporal calibration framework using the positioning and perception data of CAVs. First, a trajectory matching algorithm is designed using motion feature and point feature histogram sequences as the descriptors, which can determine the approximate spatiotemporal correspondence for the CAV from the roadside trajectory dataset. An optimization method is then formulated to tune transformation parameters through the Gaussian Process trajectory representation and Gauss-Newton algorithms, considering the sampling frequency deviation and measurement noise. Based on numerical analysis via the NGSIM and HighD datasets, it is shown that the proposed calibration method can significantly reduce transformation errors and perform robustly in different scenarios. The feasibility and practicability of the calibration method are further validated through real-world experiments at Tongji University and on the Donghai Bridge in Shanghai, China. This study provides an economical and practical way for spatiotemporal calibration of roadside sensors in an era of CAVs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助元谷雪采纳,获得10
刚刚
刚刚
昭昭找不到完成签到,获得积分10
1秒前
1秒前
清脆剑封完成签到,获得积分10
2秒前
2秒前
小米粥发布了新的文献求助10
2秒前
3秒前
4秒前
bsnc完成签到,获得积分10
4秒前
安妮发布了新的文献求助10
4秒前
外向冰绿完成签到,获得积分10
5秒前
传奇3应助高高采纳,获得10
5秒前
风清扬发布了新的文献求助10
5秒前
郝誉发布了新的文献求助10
5秒前
Jasper应助欣喜易形采纳,获得10
6秒前
Uranus发布了新的文献求助10
7秒前
ALDRC完成签到,获得积分10
7秒前
8秒前
或许度发布了新的文献求助10
8秒前
SciGPT应助Xl采纳,获得10
9秒前
wanci应助明理的帆布鞋采纳,获得10
11秒前
科研通AI6应助fzzf采纳,获得10
11秒前
小二郎应助北克采纳,获得10
11秒前
顾矜应助感动的小懒虫采纳,获得10
11秒前
小火花完成签到,获得积分10
12秒前
13秒前
JM关闭了JM文献求助
14秒前
烟花应助微光熠采纳,获得10
14秒前
16秒前
糊涂的汽车完成签到,获得积分10
16秒前
16秒前
愉快的花卷完成签到,获得积分10
16秒前
masro完成签到,获得积分10
17秒前
17秒前
18秒前
草帽发布了新的文献求助10
19秒前
19秒前
997发布了新的文献求助10
20秒前
机智的天蓉完成签到 ,获得积分10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277