已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Rapid and Convenient Spatiotemporal Calibration Method of Roadside Sensors Using Floating Connected and Automated Vehicle Data

校准 计算机科学 实时计算 数学 统计
作者
Cong Zhao,Yupeng Shi,Yuchuan Du,Shengchuan Jiang,Yuxiong Ji,Xiangmo Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 10953-10966 被引量:5
标识
DOI:10.1109/tits.2024.3366758
摘要

Cameras, millimeter-wave radars, and lidars are widely deployed on smart roads to obtain personalized vehicle trajectories for advanced traffic control and risk avoidance. However, these asynchronous roadside sensors need to be spatiotemporally calibrated accurately before they are put into service. Traditional manual manipulation methods are inefficient and will affect traffic operation and safety. A rapid and convenient method has become essential under the trend that large amounts of roadside sensors need to be tested and calibrated frequently. As more and more connected and automated vehicles (CAVs) flood the smart roads, this paper proposes a novel spatiotemporal calibration framework using the positioning and perception data of CAVs. First, a trajectory matching algorithm is designed using motion feature and point feature histogram sequences as the descriptors, which can determine the approximate spatiotemporal correspondence for the CAV from the roadside trajectory dataset. An optimization method is then formulated to tune transformation parameters through the Gaussian Process trajectory representation and Gauss-Newton algorithms, considering the sampling frequency deviation and measurement noise. Based on numerical analysis via the NGSIM and HighD datasets, it is shown that the proposed calibration method can significantly reduce transformation errors and perform robustly in different scenarios. The feasibility and practicability of the calibration method are further validated through real-world experiments at Tongji University and on the Donghai Bridge in Shanghai, China. This study provides an economical and practical way for spatiotemporal calibration of roadside sensors in an era of CAVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
vanHaren完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
10秒前
11秒前
11秒前
开拖拉机的芍药完成签到 ,获得积分10
12秒前
12秒前
13秒前
我是老大应助昧冒冰采纳,获得10
14秒前
麦乐酷发布了新的文献求助10
15秒前
15秒前
17秒前
鱼鱼完成签到 ,获得积分10
18秒前
18秒前
zzq完成签到 ,获得积分10
20秒前
生椰拿铁死忠粉完成签到,获得积分0
20秒前
共享精神应助专一的大神采纳,获得10
21秒前
22秒前
爆米花应助洋洋采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
24秒前
Kei应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
Yini应助科研通管家采纳,获得30
24秒前
orixero应助科研通管家采纳,获得10
24秒前
Kei应助科研通管家采纳,获得10
24秒前
天黑不打烊完成签到,获得积分10
25秒前
26秒前
利物浦996发布了新的文献求助10
31秒前
搜集达人应助炙热芯采纳,获得10
32秒前
32秒前
健壮慕梅完成签到,获得积分10
33秒前
34秒前
35秒前
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407434
求助须知:如何正确求助?哪些是违规求助? 4525015
关于积分的说明 14100656
捐赠科研通 4438741
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428463
关于科研通互助平台的介绍 1406482