A Rapid and Convenient Spatiotemporal Calibration Method of Roadside Sensors Using Floating Connected and Automated Vehicle Data

校准 计算机科学 实时计算 数学 统计
作者
Cong Zhao,Yupeng Shi,Yuchuan Du,Shengchuan Jiang,Yuxiong Ji,Xiangmo Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 10953-10966 被引量:5
标识
DOI:10.1109/tits.2024.3366758
摘要

Cameras, millimeter-wave radars, and lidars are widely deployed on smart roads to obtain personalized vehicle trajectories for advanced traffic control and risk avoidance. However, these asynchronous roadside sensors need to be spatiotemporally calibrated accurately before they are put into service. Traditional manual manipulation methods are inefficient and will affect traffic operation and safety. A rapid and convenient method has become essential under the trend that large amounts of roadside sensors need to be tested and calibrated frequently. As more and more connected and automated vehicles (CAVs) flood the smart roads, this paper proposes a novel spatiotemporal calibration framework using the positioning and perception data of CAVs. First, a trajectory matching algorithm is designed using motion feature and point feature histogram sequences as the descriptors, which can determine the approximate spatiotemporal correspondence for the CAV from the roadside trajectory dataset. An optimization method is then formulated to tune transformation parameters through the Gaussian Process trajectory representation and Gauss-Newton algorithms, considering the sampling frequency deviation and measurement noise. Based on numerical analysis via the NGSIM and HighD datasets, it is shown that the proposed calibration method can significantly reduce transformation errors and perform robustly in different scenarios. The feasibility and practicability of the calibration method are further validated through real-world experiments at Tongji University and on the Donghai Bridge in Shanghai, China. This study provides an economical and practical way for spatiotemporal calibration of roadside sensors in an era of CAVs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白元正完成签到,获得积分10
刚刚
1秒前
上官若男应助xh采纳,获得10
1秒前
nice糊涂慧发布了新的文献求助10
1秒前
搞什么科研完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
情怀应助michael采纳,获得10
2秒前
3秒前
Lee发布了新的文献求助10
3秒前
3秒前
lily发布了新的文献求助10
3秒前
大模型应助雪菜采纳,获得10
3秒前
3秒前
whuyyz发布了新的文献求助10
3秒前
yyygggx完成签到,获得积分10
3秒前
敢敢完成签到 ,获得积分20
4秒前
张陶求完成签到,获得积分10
4秒前
ZoengPak发布了新的文献求助10
4秒前
念头完成签到 ,获得积分10
4秒前
宁金鑫完成签到,获得积分10
5秒前
happynewyear发布了新的文献求助20
5秒前
Cecilia发布了新的文献求助20
5秒前
王王应助含蓄的冬易采纳,获得20
5秒前
脑洞疼应助外向的梦安采纳,获得10
5秒前
6秒前
淡然的砖家完成签到,获得积分20
6秒前
7秒前
粥粥发布了新的文献求助30
7秒前
7秒前
djbj2022完成签到,获得积分10
8秒前
Jasper应助Everglow采纳,获得10
8秒前
馫X完成签到 ,获得积分10
8秒前
Lee完成签到,获得积分10
9秒前
9秒前
9秒前
隐形曼青应助Eana采纳,获得10
9秒前
科研通AI6.1应助健忘芹采纳,获得10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300