亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Personalised Multi-modal Interactive Recommendation with Hierarchical State Representations

情态动词 计算机科学 国家(计算机科学) 人机交互 人工智能 算法 化学 高分子化学
作者
Yaxiong Wu,Craig Macdonald,Iadh Ounis
标识
DOI:10.1145/3651169
摘要

Multi-modal interactive recommender systems (MMIRS) can effectively guide users towards their desired items through multi-turn interactions by leveraging the users’ real-time feedback (in the form of natural-language critiques) on previously recommended items (such as images of fashion products). In this scenario, the users’ preferences can be expressed by both the users’ past interests from their historical interactions and their current needs from the real-time interactions. However, it is typically challenging to make satisfactory personalised recommendations across multi-turn interactions due to the difficulty in balancing the users’ past interests and the current needs for generating the users’ state (i.e., current preferences) representations over time. However, hierarchical reinforcement learning has been successfully applied in various fields by decomposing a complex task into a hierarchy of more easily addressed subtasks. In this journal article, we propose a novel personalised multi-modal interactive recommendation model (PMMIR) using hierarchical reinforcement learning to more effectively incorporate the users’ preferences from both their past and real-time interactions. In particular, PMMIR decomposes the personalised interactive recommendation process into a sequence of two subtasks with hierarchical state representations: a first subtask where a history encoder learns the users’ past interests with the hidden states of history for providing personalised initial recommendations and a second subtask where a state tracker estimates the current needs with the real-time estimated states for updating the subsequent recommendations. The history encoder and the state tracker are jointly optimised with a single objective by maximising the users’ future satisfaction with the recommendations. Following previous work, we train and evaluate our PMMIR model using a user simulator that can generate natural-language critiques about the recommendations as a surrogate for real human users. Experiments conducted on two derived fashion datasets from two well-known public datasets demonstrate that our proposed PMMIR model yields significant improvements in comparison to the existing state-of-the-art baseline models. The datasets and code are publicly available at: https://github.com/yashonwu/pmmir
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助lihongjie采纳,获得10
刚刚
boshi发布了新的文献求助20
2秒前
许三问完成签到 ,获得积分0
7秒前
余念安完成签到 ,获得积分10
8秒前
24秒前
25秒前
Jepsen完成签到 ,获得积分10
26秒前
随机昵称发布了新的文献求助30
31秒前
32秒前
33秒前
爆米花应助XD采纳,获得10
36秒前
37秒前
Maru完成签到,获得积分10
39秒前
sfzz发布了新的文献求助10
41秒前
CipherSage应助amin采纳,获得10
42秒前
张晓祁完成签到,获得积分10
45秒前
xiaoyuan完成签到,获得积分10
47秒前
47秒前
48秒前
48秒前
XD发布了新的文献求助10
51秒前
big ben完成签到 ,获得积分10
52秒前
yueying完成签到,获得积分10
53秒前
ZHY发布了新的文献求助10
53秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
zho应助科研通管家采纳,获得10
56秒前
所所应助科研通管家采纳,获得10
56秒前
科研通AI5应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
57秒前
57秒前
隐形曼青应助李...采纳,获得10
58秒前
59秒前
动漫大师发布了新的文献求助10
1分钟前
哈哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
脑洞疼应助mk_smile采纳,获得10
1分钟前
研友_ZAVjM8发布了新的文献求助10
1分钟前
李...发布了新的文献求助10
1分钟前
优雅的夜柳完成签到,获得积分20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770354
求助须知:如何正确求助?哪些是违规求助? 3315432
关于积分的说明 10176120
捐赠科研通 3030411
什么是DOI,文献DOI怎么找? 1662898
邀请新用户注册赠送积分活动 795217
科研通“疑难数据库(出版商)”最低求助积分说明 756612