Personalised Multi-modal Interactive Recommendation with Hierarchical State Representations

情态动词 计算机科学 国家(计算机科学) 人机交互 人工智能 算法 化学 高分子化学
作者
Yaxiong Wu,Craig Macdonald,Iadh Ounis
标识
DOI:10.1145/3651169
摘要

Multi-modal interactive recommender systems (MMIRS) can effectively guide users towards their desired items through multi-turn interactions by leveraging the users’ real-time feedback (in the form of natural-language critiques) on previously recommended items (such as images of fashion products). In this scenario, the users’ preferences can be expressed by both the users’ past interests from their historical interactions and their current needs from the real-time interactions. However, it is typically challenging to make satisfactory personalised recommendations across multi-turn interactions due to the difficulty in balancing the users’ past interests and the current needs for generating the users’ state (i.e., current preferences) representations over time. However, hierarchical reinforcement learning has been successfully applied in various fields by decomposing a complex task into a hierarchy of more easily addressed subtasks. In this journal article, we propose a novel personalised multi-modal interactive recommendation model (PMMIR) using hierarchical reinforcement learning to more effectively incorporate the users’ preferences from both their past and real-time interactions. In particular, PMMIR decomposes the personalised interactive recommendation process into a sequence of two subtasks with hierarchical state representations: a first subtask where a history encoder learns the users’ past interests with the hidden states of history for providing personalised initial recommendations and a second subtask where a state tracker estimates the current needs with the real-time estimated states for updating the subsequent recommendations. The history encoder and the state tracker are jointly optimised with a single objective by maximising the users’ future satisfaction with the recommendations. Following previous work, we train and evaluate our PMMIR model using a user simulator that can generate natural-language critiques about the recommendations as a surrogate for real human users. Experiments conducted on two derived fashion datasets from two well-known public datasets demonstrate that our proposed PMMIR model yields significant improvements in comparison to the existing state-of-the-art baseline models. The datasets and code are publicly available at: https://github.com/yashonwu/pmmir
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟意不离关注了科研通微信公众号
刚刚
lmh完成签到,获得积分10
刚刚
明亮的斩完成签到,获得积分10
刚刚
刚刚
三跳完成签到 ,获得积分10
刚刚
刚刚
缓慢如南应助HJJHJH采纳,获得10
1秒前
泡泡完成签到 ,获得积分10
2秒前
yjq完成签到,获得积分10
2秒前
Suzanne完成签到,获得积分10
4秒前
求知小生完成签到,获得积分10
4秒前
5秒前
wind完成签到,获得积分10
6秒前
长清给长清的求助进行了留言
6秒前
DDJoy完成签到,获得积分10
6秒前
小沫灬李完成签到,获得积分10
7秒前
7秒前
CodeCraft应助圣代采纳,获得10
8秒前
8秒前
8秒前
9秒前
林小橙完成签到 ,获得积分10
9秒前
Orange应助罗杰采纳,获得10
9秒前
rigeman完成签到,获得积分10
10秒前
qql发布了新的文献求助10
10秒前
10秒前
完美世界应助wer采纳,获得10
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
36456657应助科研通管家采纳,获得20
12秒前
思源应助科研通管家采纳,获得10
12秒前
36456657应助科研通管家采纳,获得20
12秒前
luren完成签到,获得积分10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552503
求助须知:如何正确求助?哪些是违规求助? 3128579
关于积分的说明 9378740
捐赠科研通 2827750
什么是DOI,文献DOI怎么找? 1554537
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714980