Spatial differences, dynamic evolution and influencing factors of China's construction industry carbon emission efficiency

中国 碳纤维 经济地理学 环境科学 业务 自然资源经济学 地理 经济 计算机科学 考古 算法 复合数
作者
Guodong Ni,Yaqi Fang,Miaomiao Niu,Lei Lv,Changfu Song,Wenshun Wang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:448: 141593-141593 被引量:4
标识
DOI:10.1016/j.jclepro.2024.141593
摘要

Improving the construction industry carbon emission efficiency (CICEE) is crucial for achieving sustainable development. To promote low-carbon development in the construction industry, it is essential to measure carbon emission efficiency (CEE) and analyze spatial differences, dynamic evolution, and influencing factors. This study measures CICEE in 30 provinces in China from 2005 to 2019 and evaluates CEE using the minimum distance to a strong efficient frontier (MinDS) model with undesirable outputs. Subsequently, the Dagum Gini coefficient and its decomposition, as well as spatial autocorrelation analysis, are used to explore the sources of spatial differences and the spatial clustering pattern of CEE. The dynamic trend of CEE is analyzed through kernel density estimation, traditional and spatial Markov chains. Finally, geographical detectors are used to detect the explanatory factors and their interactions on spatial differences in CEE. The results of this study show that the CICEE presents an increasing and then decreasing trend, with the highest CEE in the eastern region, followed by the central and northeastern regions, and the lowest in the western region. Additionally, the eastern region exhibits the highest intra-regional differences and the highest inter-regional differences with the western region. Meanwhile, CEE shows a positive spatial correlation, with high-high (H-H) clustering in the eastern region and low-low (L-L) clustering in the western and northeastern regions. Polarization has been evident throughout the entire country and its four regions in recent years. It is challenging to achieve the CEE transfer through rapid advancement, and the efficiency of neighboring provinces will influence the potential transfer of the local province. Finally, factors such as enterprise scale, economic development level, degree of openness to the outside world, innovation level, industrial structure, and energy consumption structure all affect the spatial differences in CEE, with the interaction effect being higher than the single factor. This study presents a novel computational model to measure CICEE, analyzes the structural factors contributing to the spatial differences in CICEE, and provides theoretical support for the synergistic improvement of CEE across different regions. Combining with spatial autocorrelation analysis, the spatial distribution characteristics of CICEE are analyzed from the static level. This study provides a comprehensive examination of the evolution trend of CICEE, focusing on its dynamic evolution characteristics and the long-term transfer dimension. Additionally, geographical detector technology is introduced for the first time to analyze the influencing factors of spatial differences in CICEE. providing scientific evidence for the sustainable and coordinated development of different regions in China's construction industry. Furthermore, this study also contributes to the development of varied strategies for improving CICEE in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
是晓宇啊发布了新的文献求助10
刚刚
1秒前
xiao5424liu发布了新的文献求助10
1秒前
从容的盼晴完成签到,获得积分10
1秒前
lr完成签到 ,获得积分10
1秒前
dundun发布了新的文献求助10
1秒前
nini发布了新的文献求助10
2秒前
孙福禄应助LWJ采纳,获得10
2秒前
小狗味儿发布了新的文献求助10
2秒前
AUSTINZHOU完成签到,获得积分10
3秒前
3秒前
4秒前
爱听歌的峻熙完成签到,获得积分10
4秒前
xu发布了新的文献求助10
4秒前
5秒前
五五发布了新的文献求助10
5秒前
MZ完成签到,获得积分20
7秒前
YANA完成签到,获得积分10
7秒前
LMH发布了新的文献求助10
8秒前
达利园完成签到,获得积分10
8秒前
称心乐枫完成签到,获得积分10
8秒前
Dr.Dream完成签到,获得积分10
9秒前
仁爱仙人掌完成签到,获得积分10
12秒前
是晓宇啊完成签到,获得积分10
14秒前
嗷嗷小刺猬完成签到 ,获得积分10
15秒前
15秒前
疯狂狗兔应助Collapsar采纳,获得10
16秒前
Linp应助Gtingting采纳,获得10
16秒前
16秒前
东木雨完成签到 ,获得积分10
16秒前
小yang完成签到,获得积分10
17秒前
彭于晏应助彩虹猫采纳,获得10
17秒前
18秒前
dong应助xu采纳,获得10
19秒前
酷波er应助MZ采纳,获得10
20秒前
kyxx2023发布了新的文献求助10
20秒前
彭于晏应助香蕉秋寒采纳,获得10
20秒前
体贴花卷发布了新的文献求助10
20秒前
背后访风发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992327
求助须知:如何正确求助?哪些是违规求助? 3533320
关于积分的说明 11261997
捐赠科研通 3272795
什么是DOI,文献DOI怎么找? 1805880
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459