Spatial differences, dynamic evolution and influencing factors of China's construction industry carbon emission efficiency

中国 碳纤维 经济地理学 环境科学 业务 自然资源经济学 地理 经济 计算机科学 考古 算法 复合数
作者
Guodong Ni,Yaqi Fang,Miaomiao Niu,Lei Lv,Changfu Song,Wenshun Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:448: 141593-141593 被引量:4
标识
DOI:10.1016/j.jclepro.2024.141593
摘要

Improving the construction industry carbon emission efficiency (CICEE) is crucial for achieving sustainable development. To promote low-carbon development in the construction industry, it is essential to measure carbon emission efficiency (CEE) and analyze spatial differences, dynamic evolution, and influencing factors. This study measures CICEE in 30 provinces in China from 2005 to 2019 and evaluates CEE using the minimum distance to a strong efficient frontier (MinDS) model with undesirable outputs. Subsequently, the Dagum Gini coefficient and its decomposition, as well as spatial autocorrelation analysis, are used to explore the sources of spatial differences and the spatial clustering pattern of CEE. The dynamic trend of CEE is analyzed through kernel density estimation, traditional and spatial Markov chains. Finally, geographical detectors are used to detect the explanatory factors and their interactions on spatial differences in CEE. The results of this study show that the CICEE presents an increasing and then decreasing trend, with the highest CEE in the eastern region, followed by the central and northeastern regions, and the lowest in the western region. Additionally, the eastern region exhibits the highest intra-regional differences and the highest inter-regional differences with the western region. Meanwhile, CEE shows a positive spatial correlation, with high-high (H-H) clustering in the eastern region and low-low (L-L) clustering in the western and northeastern regions. Polarization has been evident throughout the entire country and its four regions in recent years. It is challenging to achieve the CEE transfer through rapid advancement, and the efficiency of neighboring provinces will influence the potential transfer of the local province. Finally, factors such as enterprise scale, economic development level, degree of openness to the outside world, innovation level, industrial structure, and energy consumption structure all affect the spatial differences in CEE, with the interaction effect being higher than the single factor. This study presents a novel computational model to measure CICEE, analyzes the structural factors contributing to the spatial differences in CICEE, and provides theoretical support for the synergistic improvement of CEE across different regions. Combining with spatial autocorrelation analysis, the spatial distribution characteristics of CICEE are analyzed from the static level. This study provides a comprehensive examination of the evolution trend of CICEE, focusing on its dynamic evolution characteristics and the long-term transfer dimension. Additionally, geographical detector technology is introduced for the first time to analyze the influencing factors of spatial differences in CICEE. providing scientific evidence for the sustainable and coordinated development of different regions in China's construction industry. Furthermore, this study also contributes to the development of varied strategies for improving CICEE in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明帅哥发布了新的文献求助10
刚刚
天天困完成签到,获得积分10
1秒前
LWJ完成签到 ,获得积分10
1秒前
EBA完成签到,获得积分10
1秒前
MrH完成签到,获得积分10
1秒前
佳仔完成签到,获得积分10
1秒前
2秒前
危机的井完成签到,获得积分10
2秒前
chan完成签到,获得积分10
2秒前
无机盐完成签到,获得积分10
2秒前
miaorunquan完成签到,获得积分10
3秒前
3秒前
狂野的冰棍完成签到,获得积分10
3秒前
4秒前
222完成签到 ,获得积分10
4秒前
慕青应助焦糖三分甜采纳,获得10
4秒前
mo完成签到,获得积分10
4秒前
liu完成签到,获得积分10
5秒前
彭于晏应助WCheng采纳,获得10
6秒前
WHT完成签到,获得积分10
6秒前
黑黑黑完成签到,获得积分10
6秒前
6秒前
田様应助等风的人采纳,获得10
7秒前
思源应助科研通管家采纳,获得30
7秒前
HEIKU应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得30
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得30
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
会魔法的老人完成签到,获得积分10
7秒前
笑点低的如凡完成签到,获得积分10
7秒前
8秒前
1sunpf完成签到,获得积分10
8秒前
zygclwl完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
spf完成签到,获得积分10
8秒前
科目三应助yy122采纳,获得10
10秒前
lolo发布了新的文献求助10
12秒前
hz_sz完成签到,获得积分10
12秒前
慕青应助洁净的嘉熙采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134243
求助须知:如何正确求助?哪些是违规求助? 2785100
关于积分的说明 7770199
捐赠科研通 2440666
什么是DOI,文献DOI怎么找? 1297493
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792