重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Spatial differences, dynamic evolution and influencing factors of China's construction industry carbon emission efficiency

中国 碳纤维 经济地理学 环境科学 业务 自然资源经济学 地理 经济 计算机科学 考古 算法 复合数
作者
Guodong Ni,Yaqi Fang,Miaomiao Niu,Lei Lv,Changfu Song,Wenshun Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:448: 141593-141593 被引量:4
标识
DOI:10.1016/j.jclepro.2024.141593
摘要

Improving the construction industry carbon emission efficiency (CICEE) is crucial for achieving sustainable development. To promote low-carbon development in the construction industry, it is essential to measure carbon emission efficiency (CEE) and analyze spatial differences, dynamic evolution, and influencing factors. This study measures CICEE in 30 provinces in China from 2005 to 2019 and evaluates CEE using the minimum distance to a strong efficient frontier (MinDS) model with undesirable outputs. Subsequently, the Dagum Gini coefficient and its decomposition, as well as spatial autocorrelation analysis, are used to explore the sources of spatial differences and the spatial clustering pattern of CEE. The dynamic trend of CEE is analyzed through kernel density estimation, traditional and spatial Markov chains. Finally, geographical detectors are used to detect the explanatory factors and their interactions on spatial differences in CEE. The results of this study show that the CICEE presents an increasing and then decreasing trend, with the highest CEE in the eastern region, followed by the central and northeastern regions, and the lowest in the western region. Additionally, the eastern region exhibits the highest intra-regional differences and the highest inter-regional differences with the western region. Meanwhile, CEE shows a positive spatial correlation, with high-high (H-H) clustering in the eastern region and low-low (L-L) clustering in the western and northeastern regions. Polarization has been evident throughout the entire country and its four regions in recent years. It is challenging to achieve the CEE transfer through rapid advancement, and the efficiency of neighboring provinces will influence the potential transfer of the local province. Finally, factors such as enterprise scale, economic development level, degree of openness to the outside world, innovation level, industrial structure, and energy consumption structure all affect the spatial differences in CEE, with the interaction effect being higher than the single factor. This study presents a novel computational model to measure CICEE, analyzes the structural factors contributing to the spatial differences in CICEE, and provides theoretical support for the synergistic improvement of CEE across different regions. Combining with spatial autocorrelation analysis, the spatial distribution characteristics of CICEE are analyzed from the static level. This study provides a comprehensive examination of the evolution trend of CICEE, focusing on its dynamic evolution characteristics and the long-term transfer dimension. Additionally, geographical detector technology is introduced for the first time to analyze the influencing factors of spatial differences in CICEE. providing scientific evidence for the sustainable and coordinated development of different regions in China's construction industry. Furthermore, this study also contributes to the development of varied strategies for improving CICEE in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dsa发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
WJ完成签到,获得积分10
2秒前
牧星完成签到,获得积分10
3秒前
zzz完成签到,获得积分10
4秒前
111发布了新的文献求助10
5秒前
5秒前
WJ发布了新的文献求助10
5秒前
啦啦啦啦啦完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助annzl采纳,获得10
8秒前
泡泡完成签到,获得积分10
9秒前
9秒前
orixero应助听话的含芙采纳,获得10
11秒前
能干智宸完成签到,获得积分10
11秒前
热情灵珊发布了新的文献求助10
12秒前
今日完成签到,获得积分10
12秒前
yqf完成签到,获得积分10
13秒前
YH_Z完成签到 ,获得积分10
13秒前
Akim应助北张采纳,获得10
14秒前
14秒前
ao关闭了ao文献求助
15秒前
量子星尘发布了新的文献求助10
15秒前
下文献的蜉蝣完成签到 ,获得积分10
17秒前
yznfly应助知食分子采纳,获得40
18秒前
大个应助党蕊芳采纳,获得10
18秒前
19秒前
今日发布了新的文献求助10
19秒前
20秒前
Tonson应助自由青采纳,获得10
20秒前
21秒前
桐桐应助单薄的小松鼠采纳,获得10
21秒前
斯文凝蕊完成签到,获得积分10
22秒前
科研通AI6应助1111采纳,获得10
23秒前
23秒前
星辰大海应助水文小白采纳,获得10
23秒前
情怀应助彩色的诗桃采纳,获得10
24秒前
Tonson应助我是聪聪呦采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707