Spatial differences, dynamic evolution and influencing factors of China's construction industry carbon emission efficiency

中国 碳纤维 经济地理学 环境科学 业务 自然资源经济学 地理 经济 计算机科学 算法 复合数 考古
作者
Guodong Ni,Yaqi Fang,Miaomiao Niu,Lei Lv,Changfu Song,Wenshun Wang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:448: 141593-141593 被引量:4
标识
DOI:10.1016/j.jclepro.2024.141593
摘要

Improving the construction industry carbon emission efficiency (CICEE) is crucial for achieving sustainable development. To promote low-carbon development in the construction industry, it is essential to measure carbon emission efficiency (CEE) and analyze spatial differences, dynamic evolution, and influencing factors. This study measures CICEE in 30 provinces in China from 2005 to 2019 and evaluates CEE using the minimum distance to a strong efficient frontier (MinDS) model with undesirable outputs. Subsequently, the Dagum Gini coefficient and its decomposition, as well as spatial autocorrelation analysis, are used to explore the sources of spatial differences and the spatial clustering pattern of CEE. The dynamic trend of CEE is analyzed through kernel density estimation, traditional and spatial Markov chains. Finally, geographical detectors are used to detect the explanatory factors and their interactions on spatial differences in CEE. The results of this study show that the CICEE presents an increasing and then decreasing trend, with the highest CEE in the eastern region, followed by the central and northeastern regions, and the lowest in the western region. Additionally, the eastern region exhibits the highest intra-regional differences and the highest inter-regional differences with the western region. Meanwhile, CEE shows a positive spatial correlation, with high-high (H-H) clustering in the eastern region and low-low (L-L) clustering in the western and northeastern regions. Polarization has been evident throughout the entire country and its four regions in recent years. It is challenging to achieve the CEE transfer through rapid advancement, and the efficiency of neighboring provinces will influence the potential transfer of the local province. Finally, factors such as enterprise scale, economic development level, degree of openness to the outside world, innovation level, industrial structure, and energy consumption structure all affect the spatial differences in CEE, with the interaction effect being higher than the single factor. This study presents a novel computational model to measure CICEE, analyzes the structural factors contributing to the spatial differences in CICEE, and provides theoretical support for the synergistic improvement of CEE across different regions. Combining with spatial autocorrelation analysis, the spatial distribution characteristics of CICEE are analyzed from the static level. This study provides a comprehensive examination of the evolution trend of CICEE, focusing on its dynamic evolution characteristics and the long-term transfer dimension. Additionally, geographical detector technology is introduced for the first time to analyze the influencing factors of spatial differences in CICEE. providing scientific evidence for the sustainable and coordinated development of different regions in China's construction industry. Furthermore, this study also contributes to the development of varied strategies for improving CICEE in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助YZMING采纳,获得10
1秒前
2秒前
2秒前
一颗煤炭完成签到 ,获得积分10
2秒前
gry发布了新的文献求助10
3秒前
sujinyu完成签到,获得积分10
3秒前
小蘑菇应助显隐采纳,获得10
3秒前
4秒前
ding应助ght采纳,获得60
6秒前
研友_VZG7GZ应助医学生采纳,获得10
6秒前
看书书发布了新的文献求助10
7秒前
9秒前
9秒前
zzzzzz发布了新的文献求助10
9秒前
哇哇卡哇发布了新的文献求助30
9秒前
9秒前
yizhiyetu完成签到,获得积分10
10秒前
简化为发布了新的文献求助10
10秒前
10秒前
10秒前
GAN完成签到,获得积分10
11秒前
caizhonglun完成签到,获得积分10
11秒前
13秒前
14秒前
Aoren发布了新的文献求助10
15秒前
Luo发布了新的文献求助10
16秒前
orixero应助cici采纳,获得10
17秒前
医学生发布了新的文献求助10
17秒前
852应助狂野香氛采纳,获得10
18秒前
19秒前
苏三三完成签到,获得积分10
20秒前
随遇而安完成签到,获得积分10
20秒前
医学生完成签到,获得积分10
22秒前
22秒前
在水一方应助显隐采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
Ava应助有机分子笼采纳,获得10
23秒前
大力水手完成签到,获得积分10
24秒前
嘎嘎嘎嘎完成签到,获得积分10
24秒前
iOhyeye23完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049233
求助须知:如何正确求助?哪些是违规求助? 4277322
关于积分的说明 13333357
捐赠科研通 4091953
什么是DOI,文献DOI怎么找? 2239389
邀请新用户注册赠送积分活动 1246254
关于科研通互助平台的介绍 1174828