Machine learning interpretable models of cell mechanics from protein images

生物 细胞力学 细胞骨架 人工智能 计算生物学 机器学习 细胞 计算机科学 生物化学
作者
Matthew S. Schmitt,Jonathan Colen,Stefano Sala,John Devany,Shailaja Seetharaman,Alexia Caillier,Margaret L. Gardel,Patrick W. Oakes,Vincenzo Vitelli
出处
期刊:Cell [Elsevier]
卷期号:187 (2): 481-494.e24 被引量:23
标识
DOI:10.1016/j.cell.2023.11.041
摘要

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently, no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components. This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural networks to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen biological regimes. Using this observation, we develop two approaches-one constrained by physics and the other agnostic-to construct data-driven continuum models of cellular forces. Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a case study for integrating neural networks into predictive models for cell biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助pearl采纳,获得10
刚刚
1秒前
所所应助cybbbbbb采纳,获得10
1秒前
果汁发布了新的文献求助10
1秒前
2秒前
2秒前
Lucas应助柚子采纳,获得10
2秒前
MADKAI发布了新的文献求助10
2秒前
3秒前
爆米花应助咕咕咕采纳,获得10
3秒前
zxy发布了新的文献求助10
3秒前
4秒前
醉人的仔发布了新的文献求助10
4秒前
daguan完成签到,获得积分10
4秒前
桐桐应助nikai采纳,获得10
4秒前
5秒前
6秒前
123完成签到,获得积分10
6秒前
善良香岚发布了新的文献求助10
6秒前
7秒前
7秒前
444完成签到,获得积分10
7秒前
任一发布了新的文献求助30
7秒前
莉莉发布了新的文献求助10
8秒前
Zoe发布了新的文献求助10
8秒前
Hover完成签到,获得积分10
8秒前
自然的茉莉完成签到,获得积分10
9秒前
9秒前
Mandy完成签到,获得积分10
9秒前
10秒前
脑洞疼应助qaq采纳,获得10
10秒前
世界尽头发布了新的文献求助10
10秒前
小二郎应助科研民工采纳,获得10
10秒前
11秒前
无奈满天发布了新的文献求助10
11秒前
12秒前
MADKAI发布了新的文献求助10
12秒前
12秒前
贪玩丸子完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759