A Novel Weighted Ensemble Transferred U-Net Based Model (WETUM) for Postearthquake Building Damage Assessment From UAV Data: A Comparison of Deep Learning- and Machine Learning-Based Approaches

计算机科学 随机森林 概化理论 深度学习 人工智能 分类器(UML) 机器学习 模式识别(心理学) 遥感 数据挖掘 数学 地质学 统计
作者
Ehsan Khankeshizadeh,Ali Mohammadzadeh,H. Arefi,Amin Mohsenifar,Saied Pirasteh,En Fan,Huxiong Li,Jonathan Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:14
标识
DOI:10.1109/tgrs.2024.3354737
摘要

Nowadays, unmanned aerial vehicle (UAV) remote sensing data are key operational sources used to produce a reliable building damage map (BDM), which is of great importance in instant response and rescue operations after earthquakes. The present study proposes a novel weighted ensemble transferred U-Net-based model (WETUM) consisting of two major steps to create a reliable binary BDM using UAV data. In the first step of the proposed approach, three individual initial BDMs are predicted by three pre-trained U-Net-based composite networks. In the second step, these three individual predictions are linearly integrated through a proposed grid search technique so that an optimized hybrid BDM (OHBDM) incorporating complementary damage information is made. The proposed WETUM was then compared with several conventional deep learning (DL) and machine learning (ML) models. The models were compared across two pivotal scenarios, addressing the impact of diverse feature sets on model performance and generalizability. Specifically, the first scenario focused solely on spectral features, while the second incorporated both spectral and geometrical features. To make the comparisons, this study conducted empirical analyses using UAV spectral and geometrical data acquired over Sarpol-e Zahab, Iran. The experimental findings showed that the synergic use of spectral and geometrical data boosted both DL- and ML-based approaches in damage detection. Moreover, the proposed WETUM with DDR values of 65.22 and 78.26 (%), respectively, for the first and second scenarios, outperformed all the compared methods. Notably, WETUM with only spectral data outperformed the random forest (RF) classifier equipped with many hand-crafted spectral and geometrical features, indicating the highest potential and generalizability of the proposed WETUM for building damage evaluation in a new unseen earthquake-affected area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力山蝶关注了科研通微信公众号
1秒前
goofs完成签到,获得积分0
1秒前
1秒前
2秒前
呆鸥完成签到,获得积分10
2秒前
健忘的雨安完成签到,获得积分10
2秒前
浪而而完成签到,获得积分10
2秒前
kakainho完成签到,获得积分10
2秒前
小样完成签到,获得积分10
2秒前
lemon完成签到,获得积分10
3秒前
3秒前
hrrypeet完成签到,获得积分10
3秒前
略略略爱完成签到 ,获得积分10
3秒前
外向如冬完成签到,获得积分10
3秒前
3秒前
研友_LkYKJZ完成签到,获得积分10
4秒前
威武鞅完成签到,获得积分10
4秒前
4秒前
5秒前
善学以致用应助99采纳,获得10
5秒前
爱听歌的寒香完成签到,获得积分10
5秒前
5秒前
迷路的诗槐完成签到,获得积分10
5秒前
6秒前
violetlishu发布了新的文献求助10
6秒前
小二郎应助hxdqhg采纳,获得10
6秒前
Joyceban完成签到,获得积分10
6秒前
ss13l完成签到,获得积分10
7秒前
顺利半梦完成签到,获得积分10
7秒前
浮光完成签到,获得积分10
7秒前
7秒前
暖暖发布了新的文献求助10
7秒前
博修发布了新的文献求助10
8秒前
蓝色的云完成签到,获得积分10
8秒前
复杂若男完成签到,获得积分20
8秒前
欲望被鬼应助外向如冬采纳,获得20
8秒前
充电宝应助长情墨镜采纳,获得10
9秒前
可爱的函函应助一二采纳,获得10
9秒前
9秒前
wbn1212发布了新的文献求助200
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912