A Novel Weighted Ensemble Transferred U-Net Based Model (WETUM) for Postearthquake Building Damage Assessment From UAV Data: A Comparison of Deep Learning- and Machine Learning-Based Approaches

计算机科学 随机森林 概化理论 深度学习 人工智能 分类器(UML) 机器学习 模式识别(心理学) 遥感 数据挖掘 数学 地质学 统计
作者
Ehsan Khankeshizadeh,Ali Mohammadzadeh,H. Arefi,Amin Mohsenifar,Saied Pirasteh,En Fan,Huxiong Li,Jonathan Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:14
标识
DOI:10.1109/tgrs.2024.3354737
摘要

Nowadays, unmanned aerial vehicle (UAV) remote sensing data are key operational sources used to produce a reliable building damage map (BDM), which is of great importance in instant response and rescue operations after earthquakes. The present study proposes a novel weighted ensemble transferred U-Net-based model (WETUM) consisting of two major steps to create a reliable binary BDM using UAV data. In the first step of the proposed approach, three individual initial BDMs are predicted by three pre-trained U-Net-based composite networks. In the second step, these three individual predictions are linearly integrated through a proposed grid search technique so that an optimized hybrid BDM (OHBDM) incorporating complementary damage information is made. The proposed WETUM was then compared with several conventional deep learning (DL) and machine learning (ML) models. The models were compared across two pivotal scenarios, addressing the impact of diverse feature sets on model performance and generalizability. Specifically, the first scenario focused solely on spectral features, while the second incorporated both spectral and geometrical features. To make the comparisons, this study conducted empirical analyses using UAV spectral and geometrical data acquired over Sarpol-e Zahab, Iran. The experimental findings showed that the synergic use of spectral and geometrical data boosted both DL- and ML-based approaches in damage detection. Moreover, the proposed WETUM with DDR values of 65.22 and 78.26 (%), respectively, for the first and second scenarios, outperformed all the compared methods. Notably, WETUM with only spectral data outperformed the random forest (RF) classifier equipped with many hand-crafted spectral and geometrical features, indicating the highest potential and generalizability of the proposed WETUM for building damage evaluation in a new unseen earthquake-affected area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cgsu完成签到,获得积分10
1秒前
碧蓝丹烟完成签到 ,获得积分10
1秒前
2秒前
2秒前
斯李iko发布了新的文献求助10
3秒前
马麻薯完成签到,获得积分10
4秒前
4秒前
烟花应助乌梅丸采纳,获得10
4秒前
4秒前
迪迦发布了新的文献求助30
5秒前
大侠刘川枫完成签到,获得积分10
5秒前
yiyu完成签到,获得积分20
5秒前
单薄玉米完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
酷波er应助阿北采纳,获得10
6秒前
饭饭发布了新的文献求助10
6秒前
念头发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
斯李iko完成签到,获得积分10
10秒前
11秒前
Xinli发布了新的文献求助50
12秒前
123完成签到,获得积分10
12秒前
filory完成签到,获得积分10
12秒前
125发布了新的文献求助10
12秒前
浮生发布了新的文献求助10
13秒前
www完成签到,获得积分10
14秒前
15秒前
yiyu发布了新的文献求助10
15秒前
可爱的函函应助Cwx2020采纳,获得10
16秒前
VVV完成签到,获得积分10
16秒前
顾矜应助范范范采纳,获得10
16秒前
16秒前
17秒前
125完成签到,获得积分10
18秒前
18秒前
VVV发布了新的文献求助10
18秒前
我是老大应助keyanzhang采纳,获得10
19秒前
19秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444043
求助须知:如何正确求助?哪些是违规求助? 3040031
关于积分的说明 8979942
捐赠科研通 2728708
什么是DOI,文献DOI怎么找? 1496621
科研通“疑难数据库(出版商)”最低求助积分说明 691791
邀请新用户注册赠送积分活动 689375