Spatio-temporal Fourier enhanced heterogeneous graph learning for traffic forecasting

计算机科学 图形 卷积(计算机科学) 数据挖掘 人工智能 功率图分析 机器学习 深度学习 理论计算机科学 人工神经网络
作者
Wenchang Zhang,Hua Wang,Fan Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122766-122766 被引量:4
标识
DOI:10.1016/j.eswa.2023.122766
摘要

Traffic flow prediction is of paramount importance in the field of spatio-temporal forecasting. In recent years, research efforts have primarily been directed towards developing intricate graph convolutional networks (GCNs) to capture spatial complexities. However, this has inadvertently led to the neglect of the inherent temporal correlations in traffic prediction, as well as the heterogeneity of graph structures. As a result, existing models show limited efficacy when dealing with the complex nature of traffic data. To address this issue, this paper introduces a novel traffic prediction model: the fourier-enhanced heterogeneous graph convolution attention recurrent network (FEHGCARN). This model integrates historical information and incorporates a graph convolution attention recurrent unit (GCARU), meticulously engineered to effectively capture spatio-temporal dependencies. Additionally, it features a fourier-enhanced heterogeneous graph learning module, which facilitates the acquisition of complex relationships among nodes in the frequency domain. Notably, this memory network excels at recognizing abrupt traffic conditions. To validate our approach, we conducted comprehensive comparisons using three authentic datasets and benchmarked our model against six state-of-the-art baseline methods. The experimental results unequivocally demonstrate the superior performance of our model across all evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
warden完成签到 ,获得积分10
1秒前
田様应助stuffmatter采纳,获得10
1秒前
旋881发布了新的文献求助10
1秒前
一日不看书智商输给猪完成签到,获得积分10
1秒前
1秒前
miaorunquan完成签到,获得积分10
2秒前
Free完成签到,获得积分10
2秒前
2秒前
憨人发布了新的文献求助10
2秒前
小小完成签到 ,获得积分10
3秒前
3秒前
无名的人完成签到 ,获得积分10
3秒前
托姆羊0710应助汤圆采纳,获得30
4秒前
牵着老虎晒月亮完成签到 ,获得积分10
4秒前
李栋梁发布了新的文献求助30
4秒前
5秒前
隐形曼青应助糊涂独尊采纳,获得10
5秒前
哈哈一笑完成签到,获得积分10
5秒前
5秒前
6秒前
Rocky_Qi发布了新的文献求助10
6秒前
6秒前
小疙瘩发布了新的文献求助10
6秒前
Criminology34应助王添赟采纳,获得10
7秒前
7秒前
实验必成功完成签到,获得积分10
7秒前
ouyoha完成签到,获得积分10
7秒前
8秒前
DXiao完成签到,获得积分10
8秒前
77完成签到,获得积分10
8秒前
隐形的依秋完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
liuying完成签到,获得积分10
9秒前
cupcake发布了新的文献求助10
9秒前
david完成签到,获得积分10
10秒前
杂兵甲发布了新的文献求助10
10秒前
情怀应助小蚊子采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563