A Method for Measuring the Inclination of Forgings Based on an Improved Optimization Algorithm for Fitting Ellipses

椭圆 锻造 冲孔 算法 粒子群优化 数学 点(几何) 几何学 计算机科学 工程类 机械工程
作者
Zheng Lu,Bin Liu,Kaiyue Zhang,Hongbin Lin,Yungang Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2022.3221761
摘要

During a piercing or punching process, the center axis of a forging stock is required to be parallel to the direction of movement of the upsetting rod or piercing needle because any small tilt of the stock will cause uneven upsetting or uneven punching wall thickness. In order to detect the inclination of a stock during forging, a method for measuring the inclination of forgings based on an improved optimization algorithm for fitting ellipses is proposed in the work. Specifically, a laser rangefinder is used to measure the distances to the surface of the workpiece, which are converted into Section profile coordinates through coordinate transformation. Next, the randomly divided area and random sampling are presented for screening data points, making it possible to effectively eliminate the influence of abnormal values in the measurement points. Then, taking the point-to-ellipse orthogonal distance as the geometric model, we propose an improved particle swarm optimization (PSO) algorithm to solve the target ellipse parameters. Subsequently, we compare the fitting effect with four other contemporary advanced methods to verify the superiority of the algorithm in ellipse fitting. Finally, the three-dimensional linear equation of the center axis of the forging stock is obtained according to the center point of the long axis of the ellipse in the vertical direction, and the inclination angle of the forging stock is calculated according to the linear equation. The experimental measurement reveals that the error that occurred using the method is less than 0.05°.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石敢当完成签到,获得积分10
刚刚
Lucas应助小樊同学采纳,获得10
刚刚
芳芳完成签到,获得积分10
刚刚
搞怪人雄完成签到,获得积分10
1秒前
1秒前
Pauline完成签到 ,获得积分10
3秒前
古炮发布了新的文献求助10
4秒前
洽洽瓜子shine完成签到,获得积分10
5秒前
高高梦山完成签到 ,获得积分10
5秒前
lifeng完成签到 ,获得积分10
5秒前
小樊同学完成签到,获得积分10
5秒前
梁采瑞发布了新的文献求助10
5秒前
6秒前
7秒前
糟糕的夏云完成签到,获得积分20
7秒前
霍楠完成签到,获得积分10
7秒前
伊一完成签到,获得积分10
7秒前
mawenyu完成签到,获得积分10
7秒前
andrew完成签到,获得积分10
11秒前
秋秋糖xte发布了新的文献求助10
13秒前
二娃完成签到,获得积分10
14秒前
15秒前
黑糖珍珠完成签到 ,获得积分10
16秒前
科研小白完成签到,获得积分10
17秒前
18秒前
梁采瑞完成签到,获得积分10
18秒前
CodeCraft应助Tonald Yang采纳,获得10
19秒前
Nollet完成签到 ,获得积分10
19秒前
Emily完成签到,获得积分10
20秒前
宁静完成签到,获得积分10
20秒前
NexusExplorer应助wenbin采纳,获得10
21秒前
lina完成签到 ,获得积分10
22秒前
追风筝的人完成签到,获得积分20
22秒前
淡然珍完成签到,获得积分10
22秒前
iwaking完成签到,获得积分10
22秒前
冷静剑成完成签到,获得积分10
23秒前
标致幻然完成签到 ,获得积分10
24秒前
来自三百发布了新的文献求助10
24秒前
fixing发布了新的文献求助10
24秒前
酪酪Alona完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968593
求助须知:如何正确求助?哪些是违规求助? 3513416
关于积分的说明 11167791
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794507
邀请新用户注册赠送积分活动 875170
科研通“疑难数据库(出版商)”最低求助积分说明 804671