Recent Progress on Lithium Argyrodite Solid-State Electrolytes

锂(药物) 电解质 材料科学 固态 快离子导体 化学 工程物理 医学 工程类 电极 物理化学 内分泌学
作者
Linfeng Peng,Chuang Yu,Chaochao Wei,Cong Liao,Shuai Chen,Long Zhang,Shijie Cheng,Jia Xie
出处
期刊:Acta Physico-chimica Sinica [Acta Physico-Chimica Sinica & University Chemistry Editorial Office, Peking University]
卷期号:: 2211034-2211034 被引量:9
标识
DOI:10.3866/pku.whxb202211034
摘要

Abstract: All-solid-state batteries have attracted significant attention as next-generation energy-storage devices for electric vehicles and smart grids because of their excellent safety and high energy density. Research on solid electrolytes with high ionic conductivity at room temperature, good chemical/electrochemical stability, and superior electrode compatibility is important for promoting the development of all-solid-state batteries. Sulfide electrolytes have become a hot topic among different inorganic solid electrolytes because of their relatively high Li-ion conductivity (~10-3 Sžcm-1) and low solid-solid interfacial resistance between the solid electrolytes and electrode particles. Among these sulfide electrolytes, lithium argyrodite solid electrolytes have attracted much attention owing to their high Li-ion conductivity at room temperature and relatively low cost. However, many problems still need to be solved before their practical application, such as difficulties in batch preparation, poor air stability, narrow chemical/electrochemical stability window, and poor interface stability towards high-voltage active materials. Extensive research has been conducted by many research groups to solve these problems and significant progress has been achieved. This review summarizes the current research on the structural information, ion conduction behaviors, synthesis routes, modification methods for improving the chemical/electrochemical stability properties, and applications of lithium argyrodite electrolytes combined with various cathode and anode materials in all-solid-state batteries based on our own research and published works of others. Two types of synthesis routes, the solid-state reaction route and the liquid solution route, are used to prepare lithium argyrodite electrolytes. Typically, electrolytes obtained by the former method deliver higher conductivities than those obtained by the latter. Multiple characterization methods, including alternating current (AC) impedance, molecular dynamics (MD) simulations, spin lattice relaxation in 7Li nuclear magnetic resonance (NMR), and 1D/2D Li exchange NMR, have been applied to probe Li-ion diffusion in the bulk of a signal particle across the interface section between two electrolyte particles, across the cathode, and across electrolyte particles. Increasing the number of Li vacancies via halogen substitution and element doping has been widely applied to increase the Li-ion conductivity of argyrodite electrolytes. Improvements in air stability for these argyrodite electrolytes have been achieved using element doping (such as O, Sb, and Sn) based on the hard-soft-acid-base theory and surface coating strategies. Interface contact and stability between the active materials and solid electrolytes play a key role in battery performance. Owing to the poor chemical/electrochemical stability of cathode materials, homogenous surface coatings and lithium halide electrolyte additives have been introduced into the configuration to isolate the direct contact between sulfides and active materials in the cathode mixture. Poor lithium metal compatibility inhibits the application of lithium argyrodite electrolytes in solid-state lithium metal batteries with high energy densities. Elemental doping in lithium argyrodites can form lithium alloys that impede the growth of lithium dendrites, and the surface modification of lithium metal anodes is helpful in constructing solid-state batteries with lithium metal anodes. Furthermore, research on lithium argyrodite electrolyte film preparation has also been conducted to develop a new solid-state battery construction route. In addition, the challenges and problems are analyzed, and possible research directions and development trends of lithium argyrodite solid electrolytes are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑砖头完成签到,获得积分10
1秒前
2秒前
2秒前
花玥鹿完成签到,获得积分10
2秒前
cybbbbbb完成签到,获得积分10
2秒前
咳咳完成签到,获得积分10
2秒前
3秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
3秒前
3秒前
Fareth完成签到,获得积分10
3秒前
领导范儿应助故意的绿竹采纳,获得10
3秒前
3秒前
复杂谷蓝完成签到 ,获得积分10
3秒前
4秒前
迟大猫应助于某人采纳,获得10
4秒前
qingkong发布了新的文献求助10
5秒前
5秒前
5秒前
细腻白柏完成签到,获得积分10
5秒前
5秒前
麦满分完成签到,获得积分10
6秒前
长度2到发布了新的文献求助10
6秒前
Alicia完成签到,获得积分10
7秒前
西瓜大虫完成签到,获得积分10
7秒前
害羞聋五发布了新的文献求助10
8秒前
prosperp完成签到,获得积分0
8秒前
Hongsong完成签到,获得积分20
8秒前
prosperp应助背侧丘脑采纳,获得10
9秒前
好好发布了新的文献求助10
9秒前
gaos发布了新的文献求助10
9秒前
einuo发布了新的文献求助10
10秒前
001完成签到,获得积分20
10秒前
李健应助阔达萧采纳,获得10
10秒前
陆离发布了新的文献求助10
10秒前
11秒前
66应助雪白红紫采纳,获得10
11秒前
英俊的铭应助东郭南松采纳,获得10
11秒前
YANG完成签到 ,获得积分10
12秒前
冷酷哈密瓜完成签到,获得积分10
13秒前
岁月流年完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678