Recent Progress on Lithium Argyrodite Solid-State Electrolytes

锂(药物) 电解质 材料科学 固态 快离子导体 化学 工程物理 医学 工程类 电极 物理化学 内分泌学
作者
Linfeng Peng,Chuang Yu,Chaochao Wei,Cong Liao,Shuai Chen,Long Zhang,Shijie Cheng,Jia Xie
出处
期刊:Acta Physico-chimica Sinica [Peking University Press]
卷期号:: 2211034-2211034 被引量:15
标识
DOI:10.3866/pku.whxb202211034
摘要

Abstract: All-solid-state batteries have attracted significant attention as next-generation energy-storage devices for electric vehicles and smart grids because of their excellent safety and high energy density. Research on solid electrolytes with high ionic conductivity at room temperature, good chemical/electrochemical stability, and superior electrode compatibility is important for promoting the development of all-solid-state batteries. Sulfide electrolytes have become a hot topic among different inorganic solid electrolytes because of their relatively high Li-ion conductivity (~10-3 Sžcm-1) and low solid-solid interfacial resistance between the solid electrolytes and electrode particles. Among these sulfide electrolytes, lithium argyrodite solid electrolytes have attracted much attention owing to their high Li-ion conductivity at room temperature and relatively low cost. However, many problems still need to be solved before their practical application, such as difficulties in batch preparation, poor air stability, narrow chemical/electrochemical stability window, and poor interface stability towards high-voltage active materials. Extensive research has been conducted by many research groups to solve these problems and significant progress has been achieved. This review summarizes the current research on the structural information, ion conduction behaviors, synthesis routes, modification methods for improving the chemical/electrochemical stability properties, and applications of lithium argyrodite electrolytes combined with various cathode and anode materials in all-solid-state batteries based on our own research and published works of others. Two types of synthesis routes, the solid-state reaction route and the liquid solution route, are used to prepare lithium argyrodite electrolytes. Typically, electrolytes obtained by the former method deliver higher conductivities than those obtained by the latter. Multiple characterization methods, including alternating current (AC) impedance, molecular dynamics (MD) simulations, spin lattice relaxation in 7Li nuclear magnetic resonance (NMR), and 1D/2D Li exchange NMR, have been applied to probe Li-ion diffusion in the bulk of a signal particle across the interface section between two electrolyte particles, across the cathode, and across electrolyte particles. Increasing the number of Li vacancies via halogen substitution and element doping has been widely applied to increase the Li-ion conductivity of argyrodite electrolytes. Improvements in air stability for these argyrodite electrolytes have been achieved using element doping (such as O, Sb, and Sn) based on the hard-soft-acid-base theory and surface coating strategies. Interface contact and stability between the active materials and solid electrolytes play a key role in battery performance. Owing to the poor chemical/electrochemical stability of cathode materials, homogenous surface coatings and lithium halide electrolyte additives have been introduced into the configuration to isolate the direct contact between sulfides and active materials in the cathode mixture. Poor lithium metal compatibility inhibits the application of lithium argyrodite electrolytes in solid-state lithium metal batteries with high energy densities. Elemental doping in lithium argyrodites can form lithium alloys that impede the growth of lithium dendrites, and the surface modification of lithium metal anodes is helpful in constructing solid-state batteries with lithium metal anodes. Furthermore, research on lithium argyrodite electrolyte film preparation has also been conducted to develop a new solid-state battery construction route. In addition, the challenges and problems are analyzed, and possible research directions and development trends of lithium argyrodite solid electrolytes are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的映梦完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
lll完成签到,获得积分20
刚刚
刚刚
明亮凡梦完成签到,获得积分10
1秒前
Ohoooo完成签到,获得积分10
2秒前
2秒前
蓝景轩辕完成签到 ,获得积分10
2秒前
项听蓉完成签到,获得积分10
3秒前
hao完成签到,获得积分10
3秒前
不安的白昼完成签到 ,获得积分10
4秒前
不知道完成签到,获得积分10
6秒前
6秒前
chebo发布了新的文献求助10
7秒前
一一一应助滕皓轩采纳,获得10
7秒前
一一一应助滕皓轩采纳,获得10
7秒前
科研通AI2S应助滕皓轩采纳,获得10
7秒前
大个应助十曰采纳,获得10
8秒前
li完成签到 ,获得积分10
9秒前
尘埃之影完成签到,获得积分10
11秒前
陶醉的钢笔完成签到 ,获得积分10
12秒前
飞行的子弹完成签到,获得积分20
13秒前
泥花完成签到,获得积分10
13秒前
13秒前
mr_beard完成签到 ,获得积分10
14秒前
岑晓冰完成签到 ,获得积分10
16秒前
啦啦啦完成签到,获得积分10
16秒前
感动的小鸽子完成签到 ,获得积分10
17秒前
lxj完成签到 ,获得积分10
17秒前
无辜的蜗牛完成签到 ,获得积分10
17秒前
xiaojin完成签到,获得积分10
18秒前
程程完成签到,获得积分10
18秒前
duckspy发布了新的文献求助30
18秒前
18秒前
sunyanghu369发布了新的文献求助30
23秒前
hdc12138完成签到,获得积分10
24秒前
飞龙在天完成签到,获得积分0
24秒前
狄淇儿完成签到 ,获得积分10
24秒前
吨吨完成签到,获得积分10
25秒前
小芒果完成签到,获得积分0
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022