Classification of pathogenic bacteria by Raman spectroscopy combined with variational auto‐encoder and deep learning

拉曼光谱 人工智能 编码器 噪音(视频) 计算机科学 模式识别(心理学) 深度学习 生物系统 鉴定(生物学) 生物 物理 光学 植物 操作系统 图像(数学)
作者
Bo Liu,Kunxiang Liu,Jide Sun,Lindong Shang,Qingxiang Yang,Xueping Chen,Bei Li
出处
期刊:Journal of Biophotonics [Wiley]
卷期号:16 (4) 被引量:7
标识
DOI:10.1002/jbio.202200270
摘要

Rapid and early identification of pathogens is critical to guide antibiotic therapy. Raman spectroscopy as a noninvasive diagnostic technique provides rapid and accurate detection of pathogens. Raman spectrum of single cells serves as the "fingerprint" of the cell, revealing its metabolic characteristics. Rapid identification of pathogens can be achieved by combining Raman spectroscopy and deep learning. Traditional classification techniques frequently require lots of data for training, which is time costing to collect Raman spectra. For trace samples and strains that are difficult to culture, it is difficult to provide an accurate classification model. In order to reduce the number of samples collected and improve the accuracy of the classification model, a new pathogen detection method integrating Raman spectroscopy, variational auto-encoder (VAE), and long short-term memory network (LSTM) is proposed in this paper. We collect the Raman signals of pathogens and input them to VAE for training. VAE will generate a large number of Raman spectral data that cannot be distinguished from the real spectrum, and the signal-to-noise ratio is higher than that of the real spectrum. These spectra are input into the LSTM together with the real spectrum for training, and a good classification model is obtained. The results of the experiments reveal that this method not only improves the average accuracy of pathogen classification to 96.9% but also reduces the number of Raman spectra collected from 1000 to 200. With this technology, the number of Raman spectra collected can be greatly reduced, so that strains that are difficult to culture or trace can be rapidly identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吃饭饭完成签到,获得积分10
1秒前
1秒前
TanFT发布了新的文献求助10
1秒前
1秒前
情怀应助TTT采纳,获得10
1秒前
凡平完成签到,获得积分10
1秒前
2秒前
xinyue完成签到,获得积分10
2秒前
bai完成签到 ,获得积分20
3秒前
麻辣香锅发布了新的文献求助10
3秒前
金jin完成签到,获得积分10
4秒前
清爽灵萱发布了新的文献求助10
4秒前
4秒前
ONION发布了新的文献求助10
5秒前
Bright24发布了新的文献求助10
5秒前
living笑白发布了新的文献求助20
6秒前
TanFT完成签到,获得积分10
6秒前
6秒前
黄飞完成签到,获得积分10
6秒前
6秒前
乐观啤酒应助哦豁采纳,获得10
8秒前
8R60d8应助Samuel采纳,获得10
8秒前
8秒前
圣诞节完成签到,获得积分10
9秒前
奔奔完成签到 ,获得积分10
9秒前
水光云隐完成签到,获得积分10
9秒前
plum完成签到 ,获得积分10
10秒前
开放的菲鹰完成签到,获得积分20
10秒前
10秒前
xiaoman完成签到,获得积分10
10秒前
灵巧金毛发布了新的文献求助10
10秒前
英俊的铭应助shushu采纳,获得10
11秒前
11秒前
科目三应助郑一采纳,获得10
12秒前
传奇3应助木木采纳,获得10
12秒前
干秋白发布了新的文献求助10
12秒前
sdasdd10发布了新的文献求助10
12秒前
科目三应助溜溜采纳,获得10
13秒前
小蘑菇应助ChenxiDai采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747963
求助须知:如何正确求助?哪些是违规求助? 3290830
关于积分的说明 10071227
捐赠科研通 3006723
什么是DOI,文献DOI怎么找? 1651273
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751630