Nanoparticle elasticity regulates the formation of cell membrane-coated nanoparticles and their nano-bio interactions

纳米颗粒 纳米技术 间充质干细胞 细胞 化学 细胞膜 癌细胞 生物物理学 材料科学 细胞生物学 癌症 生物 生物化学 遗传学
作者
Da Zou,Zeming Wu,Xin Yi,Yue Hui,Guangze Yang,Yun Liu,Tengjisi,Haofei Wang,Anastasia Brooks,Haolu Wang,Xin Liu,Zhi Ping Xu,Michael S. Roberts,Huajian Gao,Chun‐Xia Zhao
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (1) 被引量:34
标识
DOI:10.1073/pnas.2214757120
摘要

Cell membrane-coated nanoparticles are emerging as a new type of promising nanomaterials for immune evasion and targeted delivery. An underlying premise is that the unique biological functions of natural cell membranes can be conferred on the inherent physiochemical properties of nanoparticles by coating them with a cell membrane. However, the extent to which the membrane protein properties are preserved on these nanoparticles and the consequent bio–nano interactions are largely unexplored. Here, we synthesized two mesenchymal stem cell (MSC) membrane-coated silica nanoparticles (MCSNs), which have similar sizes but distinctly different stiffness values (MPa and GPa). Unexpectedly, a much lower macrophage uptake, but much higher cancer cell uptake, was found with the soft MCSNs compared with the stiff MCSNs. Intriguingly, we discovered that the soft MCSNs enabled the forming of a more protein-rich membrane coating and that coating had a high content of the MSC chemokine CXCR4 and MSC surface marker CD90. This led to the soft MCSNs enhancing cancer cell uptake mediated by the CD90/integrin receptor-mediated pathway and CXCR4/SDF-1 pathways. These findings provide a major step forward in our fundamental understanding of how the combination of nanoparticle elasticity and membrane coating may be used to facilitate bio–nano interactions and pave the way forward in the development of more effective cancer nanomedicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yinhe028发布了新的文献求助10
1秒前
山海发布了新的文献求助10
1秒前
2秒前
2秒前
杨绍伟完成签到,获得积分10
3秒前
夜良完成签到,获得积分10
3秒前
领导范儿应助威威采纳,获得10
3秒前
薛雯发布了新的文献求助10
4秒前
战神蛙完成签到,获得积分10
4秒前
充电宝应助小董不懂采纳,获得10
4秒前
贝贝完成签到,获得积分10
4秒前
cjj完成签到,获得积分10
5秒前
5秒前
5秒前
花痴的小松鼠完成签到 ,获得积分10
5秒前
5秒前
追寻凌柏完成签到,获得积分10
6秒前
jia发布了新的文献求助10
6秒前
dark完成签到,获得积分10
6秒前
Jasper应助酷酷珠采纳,获得10
6秒前
7秒前
7秒前
haha123发布了新的文献求助10
8秒前
Jasper应助圣洁呀嘿采纳,获得10
9秒前
库昊的假粉丝应助战神蛙采纳,获得30
9秒前
10秒前
风车发布了新的文献求助10
10秒前
华仔应助辛勤香菇采纳,获得10
10秒前
甜美坤完成签到 ,获得积分10
10秒前
小鱼爱吃肉应助yinhe028采纳,获得10
12秒前
斯文败类应助山海采纳,获得10
12秒前
JamesPei应助Q特别忠茶采纳,获得10
12秒前
柯南发布了新的文献求助80
12秒前
旦子176完成签到,获得积分10
12秒前
13秒前
Zzz关闭了Zzz文献求助
13秒前
忧郁如柏完成签到,获得积分10
13秒前
sasha完成签到,获得积分10
13秒前
薛雯完成签到 ,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312499
求助须知:如何正确求助?哪些是违规求助? 2945157
关于积分的说明 8523210
捐赠科研通 2620967
什么是DOI,文献DOI怎么找? 1433156
科研通“疑难数据库(出版商)”最低求助积分说明 664898
邀请新用户注册赠送积分活动 650255