Explainable Graph Wavelet Denoising Network for Intelligent Fault Diagnosis

计算机科学 可解释性 降噪 小波 模式识别(心理学) 特征提取 人工智能 图形 断层(地质) 数据挖掘 机器学习 理论计算机科学 地质学 地震学
作者
Tianfu Li,Chuang Sun,Sinan Li,Zhiying Wang,Xuefeng Chen,Ruqiang Yan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 8535-8548 被引量:84
标识
DOI:10.1109/tnnls.2022.3230458
摘要

Deep learning (DL)-based intelligent fault diagnosis methods have greatly promoted the development of the field of fault diagnosis due to their powerful feature extraction ability for handling massive monitoring data. However, most of them still suffer from the following three limitations. First, many existing DL-based intelligent diagnosis methods cannot extract proper discriminative features from signals with strong noise. Second, the interactions or relationships between signals are ignored, while they mainly focus on extracting temporal features from the signal. Third, owing to their black-box nature, the learned features lack interpretability, which hinders their application in the industry. To tackle these issues, an explainable graph wavelet denoising network (GWDN) is proposed to achieve intelligent fault diagnosis under noisy working conditions in this article. In GWDN, the collected signals are first transformed into graph-structured data to consider the interactions among signals. Then, the graph wavelet denoising convolution (GWDConv) is proposed based on the discrete graph wavelet frame, which allows GWDN to achieve multiscale feature extraction for graph-structured data and realize signal denoising. Extensive experiments are implemented to verify the efficacy of the proposed GWDN, and the experimental results show that GWDN can achieve state-of-the-art performance among the comparison methods. Besides, by using the square envelope spectrum to analyze the extracted features of GWDConv, we find that it can well retain the fault-related components of the signal and realize signal denoising, which further proves that GWDN is explainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助小高采纳,获得10
1秒前
1秒前
大力帽子应助可乐加冰采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
杨杨完成签到 ,获得积分10
2秒前
TiAmo完成签到 ,获得积分10
2秒前
汉堡包应助科研通管家采纳,获得30
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
Melon完成签到 ,获得积分10
2秒前
轨迹应助科研通管家采纳,获得30
2秒前
小静完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
医学小王发布了新的文献求助30
3秒前
天天快乐应助科研通管家采纳,获得80
3秒前
情怀应助科研通管家采纳,获得10
3秒前
飘逸访蕊完成签到,获得积分20
3秒前
隐形曼青应助zzz采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
lijiayi发布了新的文献求助10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
yijiang完成签到,获得积分10
3秒前
笑点低的牛二给笑点低的牛二的求助进行了留言
3秒前
Redback应助科研通管家采纳,获得20
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
rebubu应助科研通管家采纳,获得10
3秒前
ywang发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
QZZ完成签到,获得积分10
4秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692686
求助须知:如何正确求助?哪些是违规求助? 5089409
关于积分的说明 15209142
捐赠科研通 4849841
什么是DOI,文献DOI怎么找? 2601323
邀请新用户注册赠送积分活动 1553128
关于科研通互助平台的介绍 1511300