Explainable Graph Wavelet Denoising Network for Intelligent Fault Diagnosis

计算机科学 可解释性 降噪 小波 模式识别(心理学) 特征提取 人工智能 图形 断层(地质) 数据挖掘 机器学习 理论计算机科学 地质学 地震学
作者
Tianfu Li,Chuang Sun,Sinan Li,Zhiying Wang,Xuefeng Chen,Ruqiang Yan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 8535-8548 被引量:49
标识
DOI:10.1109/tnnls.2022.3230458
摘要

Deep learning (DL)-based intelligent fault diagnosis methods have greatly promoted the development of the field of fault diagnosis due to their powerful feature extraction ability for handling massive monitoring data. However, most of them still suffer from the following three limitations. First, many existing DL-based intelligent diagnosis methods cannot extract proper discriminative features from signals with strong noise. Second, the interactions or relationships between signals are ignored, while they mainly focus on extracting temporal features from the signal. Third, owing to their black-box nature, the learned features lack interpretability, which hinders their application in the industry. To tackle these issues, an explainable graph wavelet denoising network (GWDN) is proposed to achieve intelligent fault diagnosis under noisy working conditions in this article. In GWDN, the collected signals are first transformed into graph-structured data to consider the interactions among signals. Then, the graph wavelet denoising convolution (GWDConv) is proposed based on the discrete graph wavelet frame, which allows GWDN to achieve multiscale feature extraction for graph-structured data and realize signal denoising. Extensive experiments are implemented to verify the efficacy of the proposed GWDN, and the experimental results show that GWDN can achieve state-of-the-art performance among the comparison methods. Besides, by using the square envelope spectrum to analyze the extracted features of GWDConv, we find that it can well retain the fault-related components of the signal and realize signal denoising, which further proves that GWDN is explainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺卿完成签到,获得积分10
1秒前
mmm完成签到,获得积分10
2秒前
大模型应助直率的火龙果采纳,获得10
3秒前
3秒前
Pluto完成签到,获得积分10
3秒前
田様应助大耳朵涂涂采纳,获得10
3秒前
8秒前
王地黄发布了新的文献求助100
9秒前
无花果应助小东采纳,获得10
9秒前
无花果应助小巧谷波采纳,获得10
11秒前
AXXXin发布了新的文献求助10
11秒前
爆米花应助hahaha采纳,获得10
12秒前
12秒前
小二郎应助杨佳睿采纳,获得10
13秒前
Kz发布了新的文献求助10
16秒前
大个应助叶强采纳,获得10
17秒前
小凉完成签到 ,获得积分10
17秒前
18秒前
陈一完成签到,获得积分10
19秒前
聪明白开水关注了科研通微信公众号
19秒前
19秒前
汉堡包应助科研狗采纳,获得10
19秒前
21秒前
22秒前
23秒前
23秒前
小果叮发布了新的文献求助10
25秒前
26秒前
jiangjiang完成签到 ,获得积分10
26秒前
CipherSage应助叶文轩采纳,获得30
26秒前
27秒前
28秒前
叶强发布了新的文献求助10
29秒前
Lz0330发布了新的文献求助20
30秒前
30秒前
李三金嘻嘻完成签到,获得积分10
31秒前
wyy完成签到,获得积分20
31秒前
小东发布了新的文献求助10
32秒前
叶文轩完成签到,获得积分10
33秒前
DE2022发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502715
关于积分的说明 11109873
捐赠科研通 3233579
什么是DOI,文献DOI怎么找? 1787443
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152