Comparing the Efficacy of Multiple Drugs Injection for the Treatment of Hypertrophic Scars and Keloid: A Network Meta-Analysis

医学 瘢痕疙瘩 荟萃分析 病态的 随机对照试验 科克伦图书馆 疤痕 增生性瘢痕 增生性瘢痕 内科学 外科
作者
Wenhao Wu,Yang Zhao,Yuxuan Chen,Aimei Zhong
出处
期刊:Aesthetic Plastic Surgery [Springer Nature]
卷期号:47 (1): 465-472 被引量:8
标识
DOI:10.1007/s00266-022-03163-4
摘要

Abstract Background There is no consensus regarding the choice of injected drugs for pathological scars. Although the clinical efficacy of different drug treatments was shown in many randomized controlled trials, the efficacies of many drugs are inconsistent. Therefore, this study aimed to determine how different effective drugs are for treating pathological scars. It is anticipated that the study findings may serve as guidelines for plastic surgeons. Methods Relevant literature was extracted from the following databases Cochrane Library, Embase, PubMed, Web of Science, CNKI, Weipu, and Wanfang until June 2022, such as randomized clinical trials (RCTs) evaluating different injected drugs for the treatment of pathological scars, including BTA, TAC, 5-Fu, VER, and BLE. Results This network meta-analysis of 1539 patients from 23 articles revealed that the most effective treatment for a pathological scar was TAC + BTA. The effective rate of TAC + BTA combination therapy was significantly different from that of the BTA, TAC, 5-Fu, VER, and BLM monotherapies. TAC+5-FU was more effective than TAC, 5-FU, VER, or BLM alone, and BTA was more effective than both TAC and 5-Fu. The effectiveness of VER and BLM was the same, but both were better than TAC and 5-Fu. No big differences were found between any of the other local injection therapies. Conclusions According to this network meta-analysis, a combination of keloid and hypertrophic scar injection treatment is recommended, especially BTA+TAC. However, this network meta-analysis has some limitations and must be further verified by larger samples and higher quality RCTs. Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛市发布了新的文献求助10
刚刚
科研通AI2S应助STAN采纳,获得10
1秒前
颖中竹子完成签到,获得积分10
3秒前
Zeal完成签到,获得积分10
3秒前
欢呼怜烟完成签到,获得积分10
4秒前
5秒前
6秒前
希望天下0贩的0应助牛市采纳,获得10
6秒前
英俊的铭应助洁净的代容采纳,获得10
7秒前
9秒前
加菲丰丰应助风间永恒采纳,获得20
11秒前
开放幻丝发布了新的文献求助10
11秒前
123发布了新的文献求助10
12秒前
复杂冬易完成签到,获得积分10
12秒前
英俊的铭应助聆雨霖铃采纳,获得10
13秒前
chufan发布了新的文献求助10
14秒前
一颗大树完成签到,获得积分10
14秒前
小橙子完成签到 ,获得积分10
14秒前
顾矜应助Qintt采纳,获得10
17秒前
17秒前
17秒前
zhangxy发布了新的文献求助20
17秒前
93发布了新的文献求助10
18秒前
科目三应助科研通管家采纳,获得30
20秒前
zyfqpc应助科研通管家采纳,获得60
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
23秒前
等待冬易完成签到,获得积分10
24秒前
25秒前
不冰淇淋完成签到,获得积分10
27秒前
WUYANG完成签到,获得积分10
27秒前
无无无发布了新的文献求助10
28秒前
打打应助等待冬易采纳,获得10
28秒前
EZAIJ发布了新的文献求助10
30秒前
冰糖葫芦不加糖完成签到 ,获得积分10
31秒前
WUYANG发布了新的文献求助10
32秒前
Ther发布了新的文献求助20
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123015
求助须知:如何正确求助?哪些是违规求助? 2773481
关于积分的说明 7717912
捐赠科研通 2429036
什么是DOI,文献DOI怎么找? 1290120
科研通“疑难数据库(出版商)”最低求助积分说明 621705
版权声明 600220