Dynamic risk assessment for underground gas storage facilities based on Bayesian network

贝叶斯网络 故障树分析 可靠性工程 过程(计算) 工程类 工艺安全 计算机科学 数据挖掘 在制品 机器学习 运营管理 操作系统
作者
Qing Xu,Hao Líu,Zhenhua Song,Dong Su,Laibin Zhang,Xuliang Zhang
出处
期刊:Journal of Loss Prevention in The Process Industries [Elsevier]
卷期号:82: 104961-104961 被引量:12
标识
DOI:10.1016/j.jlp.2022.104961
摘要

Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵完成签到 ,获得积分10
刚刚
Fred Guan完成签到 ,获得积分10
1秒前
2秒前
3秒前
柔弱夜梦发布了新的文献求助10
3秒前
宴究生完成签到,获得积分10
3秒前
4秒前
奋斗秋尽完成签到,获得积分10
4秒前
洋葱头小姐完成签到 ,获得积分10
4秒前
迪卡玛卡发布了新的文献求助10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
eric888应助科研通管家采纳,获得30
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
5秒前
hh关闭了hh文献求助
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
WFZ发布了新的文献求助10
6秒前
6秒前
sola完成签到,获得积分10
6秒前
FashionBoy应助王博士采纳,获得10
6秒前
7秒前
7秒前
flag完成签到,获得积分10
8秒前
你好发布了新的文献求助40
8秒前
量子星尘发布了新的文献求助10
9秒前
奋斗秋尽发布了新的文献求助10
9秒前
9秒前
pan发布了新的文献求助10
10秒前
10秒前
甜甜玫瑰发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508548
求助须知:如何正确求助?哪些是违规求助? 4603695
关于积分的说明 14487234
捐赠科研通 4538072
什么是DOI,文献DOI怎么找? 2486805
邀请新用户注册赠送积分活动 1469382
关于科研通互助平台的介绍 1441636