Dynamic risk assessment for underground gas storage facilities based on Bayesian network

贝叶斯网络 故障树分析 可靠性工程 过程(计算) 工程类 工艺安全 计算机科学 数据挖掘 在制品 机器学习 运营管理 操作系统
作者
Qing Xu,Hao Líu,Zhenhua Song,Dong Su,Laibin Zhang,Xuliang Zhang
出处
期刊:Journal of Loss Prevention in The Process Industries [Elsevier BV]
卷期号:82: 104961-104961 被引量:12
标识
DOI:10.1016/j.jlp.2022.104961
摘要

Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你吃了吗发布了新的文献求助10
1秒前
3秒前
MZT完成签到,获得积分10
3秒前
5秒前
twang93完成签到,获得积分10
5秒前
6秒前
莫x莫完成签到 ,获得积分10
7秒前
7秒前
清秀的怀蕊完成签到 ,获得积分10
8秒前
上官若男应助nn采纳,获得10
10秒前
duoduo完成签到,获得积分20
10秒前
zou发布了新的文献求助10
11秒前
12秒前
乐乐应助zyf采纳,获得10
13秒前
小吴完成签到,获得积分10
14秒前
14秒前
wlp鹏完成签到,获得积分10
14秒前
朔月完成签到,获得积分10
15秒前
17秒前
20秒前
空古悠浪完成签到,获得积分10
22秒前
爻解发布了新的文献求助10
22秒前
22秒前
11哥应助mazhen采纳,获得10
22秒前
24秒前
yy完成签到 ,获得积分10
24秒前
漂亮迎梅发布了新的文献求助10
25秒前
边城小子完成签到,获得积分10
26秒前
27秒前
辛坦夫完成签到,获得积分10
27秒前
火星上涫完成签到,获得积分10
28秒前
zyf发布了新的文献求助10
28秒前
爻解完成签到,获得积分10
28秒前
29秒前
29秒前
布毁黑完成签到 ,获得积分10
31秒前
31秒前
31秒前
31秒前
纯真若菱发布了新的文献求助10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787836
求助须知:如何正确求助?哪些是违规求助? 3333486
关于积分的说明 10261926
捐赠科研通 3049234
什么是DOI,文献DOI怎么找? 1673459
邀请新用户注册赠送积分活动 801949
科研通“疑难数据库(出版商)”最低求助积分说明 760428