Dynamic risk assessment for underground gas storage facilities based on Bayesian network

贝叶斯网络 故障树分析 可靠性工程 过程(计算) 工程类 工艺安全 计算机科学 数据挖掘 在制品 机器学习 运营管理 操作系统
作者
Qing Xu,Hao Líu,Zhenhua Song,Dong Su,Laibin Zhang,Xuliang Zhang
出处
期刊:Journal of Loss Prevention in The Process Industries [Elsevier BV]
卷期号:82: 104961-104961 被引量:12
标识
DOI:10.1016/j.jlp.2022.104961
摘要

Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱听歌幻儿完成签到,获得积分10
1秒前
发嗲的乐安发布了新的文献求助100
4秒前
wyt完成签到,获得积分10
4秒前
Kin_L完成签到,获得积分10
5秒前
5秒前
顺其自然完成签到 ,获得积分10
6秒前
7秒前
7秒前
852应助Kin_L采纳,获得10
8秒前
传奇3应助momo采纳,获得10
8秒前
szk完成签到,获得积分10
9秒前
细心健柏完成签到 ,获得积分10
10秒前
十三发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
zsk1122发布了新的文献求助10
13秒前
happyccch发布了新的文献求助10
13秒前
14秒前
huiyang sha发布了新的文献求助10
16秒前
yao完成签到,获得积分10
17秒前
弦弦弦发布了新的文献求助10
17秒前
夕子爱科研完成签到,获得积分10
17秒前
落寞臻完成签到,获得积分10
18秒前
18秒前
爆米花完成签到,获得积分10
19秒前
赤恩完成签到,获得积分10
19秒前
19秒前
哈哈哈哈发布了新的文献求助10
19秒前
Ann完成签到,获得积分10
20秒前
搜集达人应助水龙吟采纳,获得10
22秒前
22秒前
英俊的铭应助香蕉梨愁采纳,获得10
23秒前
24秒前
落后的又蓝完成签到,获得积分10
24秒前
胥钦凤发布了新的文献求助10
24秒前
万能图书馆应助弦弦弦采纳,获得10
25秒前
26秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511