根际
草原
自行车
矿化(土壤科学)
大块土
农学
放牧
微生物种群生物学
草原
营养循环
相对物种丰度
土壤水分
土壤肥力
生态系统
丰度(生态学)
环境科学
生态学
生物
细菌
考古
历史
遗传学
作者
Jiayue Liu,Frank Yonghong Li,Jiaojiao Liu,Shuwen Wang,Huaiqiang Liu,Yong Ding,Lei Ji
出处
期刊:Geoderma
[Elsevier]
日期:2022-12-14
卷期号:430: 116303-116303
被引量:20
标识
DOI:10.1016/j.geoderma.2022.116303
摘要
Soil microorganisms play a key role in soil P transformation and cycling in grassland ecosystems, while the microbial mechanisms of animal grazing mediating soil P processes are not fully understood. We conducted a grazing experiment in a typical steppe grassland in Inner Mongolia, to explore the responses of microbial communities in rhizosphere and bulk soils to grazing intensity for understanding the mechanisms of grazing affecting P cycling. We determined soil physico-chemical properties and alkaline phosphatase activities, and measured soil microbial diversity and the relative abundance of microbial P-transformation genes by metagenomics in the rhizosphere and bulk soils of a Stipa grandis dominated grassland under three grazing intensities (no-, moderate, and heavy grazing). We found that (i) grazing significantly increased soil available P concentration and soil alkaline phosphatase activity; (ii) grazing increased the abundance of bacterial, but not fungal communities, and the enhanced abundance of rhizosphere bacteria promotes the P-cycling potential; (iii) grazing increased the relative abundance of the genes responsible for microbial P-uptake and transport, and inorganic P solubilization and organic P mineralization in rhizosphere soil, but not in bulk soil; (iv) grazing reduced the node degree of the network of the genes involved in P-transformation, but it increased the node degree of the genes encoding alkaline phosphatase and the C–P lyase multi-enzyme complex in the rhizosphere soil. The grazing-induced changes in the abundance of microbial functional genes are beneficial to P-solubilization and mineralization. Our results indicate a divergent effect of grazing on soil microbial communities and their functional genes involved P-transformation in rhizosphere and bulk soils, and represent an important progress towards the understanding of the mechanisms of microbial regulation of P cycling in grassland ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI