While nucleic acids are naturally employed as carriers of genetic information based on the base pairs, they can be used as programmable materials with the base complementarity to prepare nanoparticles. Nucleic acid nanoparticles (NANPs) are highly biocompatible, and their size and shape are easily controllable via base-pairing sequences. Due to such properties of NANPs distinguished from those of other nanomaterials, they are promising candidates as drug delivery carriers. In particular, the structural features of NANPs can be fine-tuned at subnanometer resolution for the specific conditions required for biodistribution to a target tissue, thereby providing opportunities to overcome biological hurdles that hinder tissue-specific drug delivery. In this chapter, we describe major strategies to fabricate NANPs suitable for in vivo drug delivery and recent efforts to develop tissue-specific NANPs targeting important disease-related tissues such as tumors, liver, lungs, kidney, and brain and their applications for targeted systemic drug delivery.