共轭梯度法
非线性共轭梯度法
稳健性(进化)
数学
非线性系统
滤波器(信号处理)
算法
乙状窦函数
切线
应用数学
控制理论(社会学)
人工神经网络
计算机科学
梯度下降
人工智能
计算机视觉
生物化学
量子力学
基因
物理
几何学
化学
控制(管理)
作者
Yingying Xiao,Shanmou Chen,Qiangqiang Zhang,Dongyuan Lin,Minglin Shen,Junhui Qian,Shiyuan Wang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing
[Institute of Electrical and Electronics Engineers]
日期:2022-12-19
卷期号:31: 619-632
被引量:11
标识
DOI:10.1109/taslp.2022.3230545
摘要
The filtered-x least mean square (FxLMS) algorithm has been proposed for an active noise control (ANC) system. However, due to the used mean square error (MSE) criterion, FxLMS suffers from performance degeneration for non-Gaussian noises, dramatically. To address this issue, a novel robust generalized hyperbolic tangent (GHT) criterion is first constructed in this paper. Then, the random Fourier features (RFF) method and the conjugate gradient (CG) method are used to address the nonlinearity existing in ANC and solve the quadratic optimization problem induced by the GHT criterion, respectively. Finally, a novel robust random Fourier conjugate gradient filtered-x generalized hyperbolic tangent (RFCGFxGHT) algorithm is proposed for ANC. The theoretical analyses regarding the convergence and computational complexity of RFCGFxGHT are also derived. Simulation experiments on nonlinear ANC systems corrupted by the synthetic logistic chaotic and $\alpha$ -stable noises, as well as real-world functional magnetic resonance imaging (fMRI) and server room noises, are conducted to confirm the effectiveness, robustness, and desirable nonlinear learning ability of the proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI