Vision-Language Pre-Training with Triple Contrastive Learning

计算机科学 模态(人机交互) 嵌入 代表(政治) 人工智能 图像(数学) 特征学习 情态动词 自然语言处理 机器学习 化学 政治 政治学 高分子化学 法学
作者
Jinyu Yang,Jiali Duan,Son N. Tran,Yi Xu,Sampath Chanda,Li‐Qun Chen,Belinda Zeng,Trishul Chilimbi,Junzhou Huang
标识
DOI:10.1109/cvpr52688.2022.01522
摘要

Vision-language representation learning largely benefits from image-text alignment through contrastive losses (e.g., InfoNCE loss). The success of this alignment strategy is attributed to its capability in maximizing the mutual information (MI) between an image and its matched text. However, simply performing cross-modal alignment (CMA) ignores data potential within each modality, which may result in degraded representations. For instance, although CMA-based models are able to map image-text pairs close together in the embedding space, they fail to ensure that similar inputs from the same modality stay close by. This problem can get even worse when the pre-training data is noisy. In this paper, we propose triple contrastive learning (TCL) for vision-language pre-training by leveraging both cross-modal and intra-modal self-supervision. Besides CMA, TCL introduces an intra-modal contrastive objective to provide complementary benefits in representation learning. To take advantage of localized and structural information from image and text input, TCL further maximizes the average MI between local regions of image/text and their global summary. To the best of our knowledge, ours is the first work that takes into account local structure information for multi-modality representation learning. Experimental evaluations show that our approach is competitive and achieves the new state of the art on various common downstream vision-language tasks such as image-text retrieval and visual question answering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助jyyg采纳,获得30
刚刚
桥桥发布了新的文献求助10
刚刚
小二郎应助zjl采纳,获得10
刚刚
浮游应助skyer1采纳,获得10
1秒前
1秒前
可爱的函函应助tuzi采纳,获得50
3秒前
领导范儿应助十一号采纳,获得10
3秒前
丹寒完成签到,获得积分10
3秒前
3秒前
顾矜应助HYF采纳,获得10
4秒前
咪咪摸摸发布了新的文献求助10
4秒前
chen发布了新的文献求助10
5秒前
优秀发布了新的文献求助20
5秒前
Murphy_H完成签到,获得积分10
5秒前
小解完成签到 ,获得积分10
5秒前
李爱国应助asd_1采纳,获得10
5秒前
6秒前
7秒前
Jerry发布了新的文献求助20
7秒前
9秒前
11秒前
11秒前
simple1完成签到 ,获得积分10
11秒前
万能图书馆应助chen采纳,获得10
11秒前
李君然发布了新的文献求助10
12秒前
12秒前
12秒前
碧蓝安露完成签到,获得积分10
13秒前
Fudongxue完成签到,获得积分10
14秒前
Maestro_S应助jyyg采纳,获得10
14秒前
NIUBEN发布了新的文献求助10
14秒前
Grinder发布了新的文献求助10
15秒前
15秒前
桃桃发布了新的文献求助10
15秒前
15秒前
16秒前
素直发布了新的文献求助10
16秒前
Akim应助损伤采纳,获得10
16秒前
且放青山远完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426