Vision-Language Pre-Training with Triple Contrastive Learning

计算机科学 模态(人机交互) 嵌入 代表(政治) 人工智能 图像(数学) 特征学习 情态动词 自然语言处理 机器学习 政治学 政治 化学 高分子化学 法学
作者
Jinyu Yang,Jiali Duan,Son N. Tran,Yi Xu,Sampath Chanda,Li‐Qun Chen,Belinda Zeng,Trishul Chilimbi,Junzhou Huang
标识
DOI:10.1109/cvpr52688.2022.01522
摘要

Vision-language representation learning largely benefits from image-text alignment through contrastive losses (e.g., InfoNCE loss). The success of this alignment strategy is attributed to its capability in maximizing the mutual information (MI) between an image and its matched text. However, simply performing cross-modal alignment (CMA) ignores data potential within each modality, which may result in degraded representations. For instance, although CMA-based models are able to map image-text pairs close together in the embedding space, they fail to ensure that similar inputs from the same modality stay close by. This problem can get even worse when the pre-training data is noisy. In this paper, we propose triple contrastive learning (TCL) for vision-language pre-training by leveraging both cross-modal and intra-modal self-supervision. Besides CMA, TCL introduces an intra-modal contrastive objective to provide complementary benefits in representation learning. To take advantage of localized and structural information from image and text input, TCL further maximizes the average MI between local regions of image/text and their global summary. To the best of our knowledge, ours is the first work that takes into account local structure information for multi-modality representation learning. Experimental evaluations show that our approach is competitive and achieves the new state of the art on various common downstream vision-language tasks such as image-text retrieval and visual question answering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿油油发布了新的文献求助10
刚刚
hhl完成签到,获得积分10
1秒前
1秒前
白樱恋曲发布了新的文献求助30
1秒前
2秒前
2秒前
2秒前
ikun0000完成签到,获得积分10
3秒前
星辰大海应助rusellw采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
英勇熠彤完成签到 ,获得积分10
5秒前
6秒前
6秒前
Lii开心完成签到,获得积分10
6秒前
星辰大海应助冷静的成威采纳,获得10
7秒前
7秒前
酷波er应助hyr采纳,获得10
7秒前
阳光涫发布了新的文献求助10
8秒前
8秒前
桐桐应助LC采纳,获得10
8秒前
Lii开心发布了新的文献求助10
9秒前
洋葱Qoo发布了新的文献求助10
12秒前
勋出色完成签到,获得积分10
14秒前
wdy111应助Z1采纳,获得10
14秒前
14秒前
汉堡包应助吴皮皮鲁采纳,获得10
15秒前
Singularity应助吴皮皮鲁采纳,获得10
15秒前
打打应助吴皮皮鲁采纳,获得30
15秒前
16秒前
16秒前
16秒前
李爱国应助笨笨含羞草采纳,获得10
17秒前
17秒前
17秒前
18秒前
不要辣椒发布了新的文献求助10
18秒前
wqy发布了新的文献求助10
20秒前
20秒前
wanci应助科研通管家采纳,获得10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980299
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220587
捐赠科研通 3261687
什么是DOI,文献DOI怎么找? 1800886
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807249