Tiny RNN Model with Certified Robustness for Text Classification

计算机科学 稳健性(进化) 语言模型 人工智能 循环神经网络 对抗制 移动设备 特征工程 机器学习 深度学习 计算机工程 人工神经网络 生物化学 化学 基因 操作系统
作者
Qiang Yao,Supriya Tumkur Suresh Kumar,Marco Brocanelli,Dongxiao Zhu
标识
DOI:10.1109/ijcnn55064.2022.9892117
摘要

Mobile artificial intelligence has recently gained more attention due to the increasing computing power of mobile devices and applications in computer vision, natural language processing, and internet of things. Although large pre-trained language models (e.g., BERT, GPT) have recently achieved the state-of-the-art results on text classification tasks, they are not well suited for latency critical applications on mobile devices. Therefore, it is essential to design tiny models to reduce their memory and computing requirements. Model compression has shown promising results for this goal. However, some significant challenges are yet to be addressed, such as information loss and adversarial robustness. This paper attempts to tackle these challenges through a new training scheme that minimizes the information loss by maximizing the mutual information between the feature representations learned from the large and tiny models. In addition, we propose a certifiably robust defense method named GradMASK that masks a certain proportion of words in an input text. It can defend against both character-level perturbations and word substitution-based attacks. We perform extensive experiments demonstrating the effectiveness of our approach by comparing our tiny RNN models with compact RNNs (e.g., FastGRNN) and compressed RNNs (e.g., PRADO) in clean and adversarial test settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vvvnnnaa1发布了新的文献求助10
2秒前
随遇而安应助马紫蓝采纳,获得10
3秒前
4秒前
潇洒的竹杖完成签到,获得积分10
4秒前
5秒前
5秒前
伴风望海完成签到,获得积分10
7秒前
Vvvnnnaa1完成签到,获得积分10
7秒前
9秒前
10秒前
小二郎应助sea采纳,获得10
10秒前
wanci应助yanguowusheng采纳,获得10
10秒前
江峰发布了新的文献求助10
10秒前
默默纲发布了新的文献求助30
11秒前
丹尼耳背完成签到,获得积分20
11秒前
11秒前
骤雨时晴发布了新的文献求助10
12秒前
飘逸天亦发布了新的文献求助10
14秒前
赖驳完成签到,获得积分20
14秒前
852发布了新的文献求助10
14秒前
kdqiu完成签到,获得积分10
18秒前
人间炡气机完成签到 ,获得积分10
19秒前
20秒前
memory完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
如一发布了新的文献求助10
27秒前
qqq完成签到 ,获得积分10
27秒前
丹尼耳背发布了新的文献求助10
28秒前
28秒前
30秒前
桐桐应助飘逸天亦采纳,获得10
30秒前
31秒前
31秒前
31秒前
默默纲发布了新的文献求助30
32秒前
Jingshuiliushen完成签到,获得积分10
34秒前
march发布了新的文献求助10
35秒前
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799229
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194