Tiny RNN Model with Certified Robustness for Text Classification

计算机科学 稳健性(进化) 语言模型 人工智能 循环神经网络 对抗制 移动设备 特征工程 机器学习 深度学习 计算机工程 人工神经网络 生物化学 基因 操作系统 化学
作者
Qiang Yao,Supriya Tumkur Suresh Kumar,Marco Brocanelli,Dongxiao Zhu
标识
DOI:10.1109/ijcnn55064.2022.9892117
摘要

Mobile artificial intelligence has recently gained more attention due to the increasing computing power of mobile devices and applications in computer vision, natural language processing, and internet of things. Although large pre-trained language models (e.g., BERT, GPT) have recently achieved the state-of-the-art results on text classification tasks, they are not well suited for latency critical applications on mobile devices. Therefore, it is essential to design tiny models to reduce their memory and computing requirements. Model compression has shown promising results for this goal. However, some significant challenges are yet to be addressed, such as information loss and adversarial robustness. This paper attempts to tackle these challenges through a new training scheme that minimizes the information loss by maximizing the mutual information between the feature representations learned from the large and tiny models. In addition, we propose a certifiably robust defense method named GradMASK that masks a certain proportion of words in an input text. It can defend against both character-level perturbations and word substitution-based attacks. We perform extensive experiments demonstrating the effectiveness of our approach by comparing our tiny RNN models with compact RNNs (e.g., FastGRNN) and compressed RNNs (e.g., PRADO) in clean and adversarial test settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心寒松发布了新的文献求助10
刚刚
啊哈发布了新的文献求助10
刚刚
JamesPei应助常尽欢采纳,获得10
刚刚
李健应助俎树同采纳,获得10
1秒前
2秒前
屈屈发布了新的文献求助10
2秒前
玛卡巴卡发布了新的文献求助10
2秒前
张恒发布了新的文献求助10
2秒前
3秒前
Funniu完成签到,获得积分10
3秒前
4秒前
yearn发布了新的文献求助10
4秒前
zink发布了新的文献求助10
4秒前
jjccaa完成签到,获得积分20
4秒前
5秒前
Jasper应助咕咚采纳,获得10
5秒前
6秒前
xiaoxi发布了新的文献求助20
7秒前
yangsouth完成签到 ,获得积分10
7秒前
善学以致用应助土豆采纳,获得10
7秒前
7秒前
煎饼果子关注了科研通微信公众号
7秒前
科研通AI6应助啊哈采纳,获得10
7秒前
黄姗姗发布了新的文献求助10
8秒前
慕青应助刚国忠采纳,获得10
10秒前
曾经问雁发布了新的文献求助10
11秒前
任慧娟完成签到,获得积分20
11秒前
小二郎应助花花花花花采纳,获得10
11秒前
研友_LpQGjn完成签到 ,获得积分10
12秒前
12秒前
大模型应助王77采纳,获得10
12秒前
玄博元发布了新的文献求助10
13秒前
13秒前
小马甲应助二三采纳,获得10
13秒前
gyhmm完成签到,获得积分10
15秒前
黄姗姗完成签到,获得积分10
16秒前
reticenturbo完成签到,获得积分10
16秒前
xiaoxi完成签到,获得积分10
16秒前
Running发布了新的文献求助10
17秒前
yearn完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708