Accident analysis and risk prediction of tank farm based on Bayesian network method

事故(哲学) 贝叶斯网络 事故分析 可靠性(半导体) 计算机科学 贝叶斯概率 工程类 机器学习 人工智能 可靠性工程 功率(物理) 量子力学 认识论 物理 哲学
作者
Xingguang Wu,Huirong Huang,Weichao Yu,Yuming Lin,Yanhui Xue,Qingwen Cai,Jili Xu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:238 (2): 366-386 被引量:3
标识
DOI:10.1177/1748006x221139906
摘要

In recent decades, many attempts have been made to establish the cause-effect relationship model of accidents, while little work has been carried out to comprehensively consider the interdependence between the causal factors and their complex interactions with the accident outcomes. In this study, a novel accident analysis approach based on Bayesian networks (BNs) was proposed to achieve quantitative accident analysis and dynamic risk prediction of accident types and consequences. To develop the BN-based accident analysis model, a total of 1144 accident cases occurred in tank farm of China from 1960 to 2018 were collected. The BN model that can comprehensively characterize the dependencies among accident elements was established through structural learning based on accident case analysis and parameter learning based on EM algorithm. The reliability and validity of the BN model were verified by k-fold cross-validation method and comparison of predicted data with real data, and the results showed that the BN model had good classification and prediction performance. Furthermore, the established BN model was applied to the accident occurred in Huangdao, China. The analysis results show that not only the accident outcome can be accurately predicted, but also the hidden correlation can be deeply explored through the established BN model. The proposed method and findings can provide technical reference for accident investigation and analysis, and provide decision support for accident prevention and risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rrm发布了新的文献求助10
刚刚
BaiQi发布了新的文献求助10
刚刚
呆萌的源智完成签到,获得积分10
1秒前
沐黎完成签到 ,获得积分10
1秒前
桐桐应助糖油果子采纳,获得10
1秒前
健忘苠发布了新的文献求助10
2秒前
jify完成签到,获得积分10
2秒前
烂漫问儿发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
2秒前
烟花应助xuan采纳,获得10
2秒前
3秒前
3秒前
董鑫完成签到,获得积分10
4秒前
Healer发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
小圆子完成签到,获得积分10
6秒前
6秒前
要减肥南霜完成签到 ,获得积分10
7秒前
mutong发布了新的文献求助30
8秒前
nn发布了新的文献求助10
8秒前
9秒前
BaiQi完成签到,获得积分10
9秒前
xiao完成签到,获得积分10
9秒前
蒋50发布了新的文献求助30
9秒前
Wentina发布了新的文献求助10
10秒前
km发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助积极一德采纳,获得10
10秒前
baoleijia发布了新的文献求助10
11秒前
大米发布了新的文献求助10
11秒前
小蘑菇应助楼下太吵了采纳,获得10
11秒前
缥缈书本完成签到 ,获得积分10
12秒前
NARUTO完成签到 ,获得积分10
12秒前
addeoo完成签到,获得积分10
12秒前
酷波er应助咕噜噜采纳,获得10
13秒前
13秒前
SGOM完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708093
求助须知:如何正确求助?哪些是违规求助? 5186941
关于积分的说明 15252667
捐赠科研通 4861172
什么是DOI,文献DOI怎么找? 2609274
邀请新用户注册赠送积分活动 1559914
关于科研通互助平台的介绍 1517692