亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accident analysis and risk prediction of tank farm based on Bayesian network method

事故(哲学) 贝叶斯网络 事故分析 可靠性(半导体) 计算机科学 贝叶斯概率 工程类 机器学习 人工智能 可靠性工程 功率(物理) 量子力学 认识论 物理 哲学
作者
Weichao Yu,Huirong Huang,Wenxin Yu,Yuming Lin,Yuhua Xue,Qingwen Cai,Jili Xu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:238 (2): 366-386 被引量:2
标识
DOI:10.1177/1748006x221139906
摘要

In recent decades, many attempts have been made to establish the cause-effect relationship model of accidents, while little work has been carried out to comprehensively consider the interdependence between the causal factors and their complex interactions with the accident outcomes. In this study, a novel accident analysis approach based on Bayesian networks (BNs) was proposed to achieve quantitative accident analysis and dynamic risk prediction of accident types and consequences. To develop the BN-based accident analysis model, a total of 1144 accident cases occurred in tank farm of China from 1960 to 2018 were collected. The BN model that can comprehensively characterize the dependencies among accident elements was established through structural learning based on accident case analysis and parameter learning based on EM algorithm. The reliability and validity of the BN model were verified by k-fold cross-validation method and comparison of predicted data with real data, and the results showed that the BN model had good classification and prediction performance. Furthermore, the established BN model was applied to the accident occurred in Huangdao, China. The analysis results show that not only the accident outcome can be accurately predicted, but also the hidden correlation can be deeply explored through the established BN model. The proposed method and findings can provide technical reference for accident investigation and analysis, and provide decision support for accident prevention and risk management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sandy完成签到 ,获得积分10
18秒前
深情安青应助科研通管家采纳,获得30
21秒前
赘婿应助连安阳采纳,获得10
23秒前
LiangRen完成签到 ,获得积分10
30秒前
43秒前
45秒前
连安阳发布了新的文献求助10
48秒前
腼腆的康发布了新的文献求助20
52秒前
qianchang发布了新的文献求助200
57秒前
连安阳完成签到,获得积分10
57秒前
qianchang完成签到,获得积分10
1分钟前
腼腆的康完成签到 ,获得积分10
1分钟前
jerry完成签到 ,获得积分20
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
wxl完成签到,获得积分10
2分钟前
PL完成签到,获得积分10
3分钟前
adcc102完成签到 ,获得积分10
3分钟前
3分钟前
欣嫩谷发布了新的文献求助10
3分钟前
cydanyanpi完成签到,获得积分10
3分钟前
4分钟前
4分钟前
松林揽月发布了新的文献求助10
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
松林揽月发布了新的文献求助10
4分钟前
5分钟前
松林揽月发布了新的文献求助10
5分钟前
松林揽月发布了新的文献求助10
5分钟前
研友_VZG7GZ应助欢欢采纳,获得10
6分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
欢欢完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
Tim完成签到 ,获得积分10
6分钟前
6分钟前
彭于晏应助11111111采纳,获得10
6分钟前
兰子君11完成签到 ,获得积分10
6分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234564
求助须知:如何正确求助?哪些是违规求助? 2880908
关于积分的说明 8217339
捐赠科研通 2548510
什么是DOI,文献DOI怎么找? 1377809
科研通“疑难数据库(出版商)”最低求助积分说明 648006
邀请新用户注册赠送积分活动 623361