Accident analysis and risk prediction of tank farm based on Bayesian network method

事故(哲学) 贝叶斯网络 事故分析 可靠性(半导体) 计算机科学 贝叶斯概率 工程类 机器学习 人工智能 可靠性工程 功率(物理) 量子力学 认识论 物理 哲学
作者
Xingguang Wu,Huirong Huang,Weichao Yu,Yuming Lin,Yanhui Xue,Qingwen Cai,Jili Xu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:238 (2): 366-386 被引量:3
标识
DOI:10.1177/1748006x221139906
摘要

In recent decades, many attempts have been made to establish the cause-effect relationship model of accidents, while little work has been carried out to comprehensively consider the interdependence between the causal factors and their complex interactions with the accident outcomes. In this study, a novel accident analysis approach based on Bayesian networks (BNs) was proposed to achieve quantitative accident analysis and dynamic risk prediction of accident types and consequences. To develop the BN-based accident analysis model, a total of 1144 accident cases occurred in tank farm of China from 1960 to 2018 were collected. The BN model that can comprehensively characterize the dependencies among accident elements was established through structural learning based on accident case analysis and parameter learning based on EM algorithm. The reliability and validity of the BN model were verified by k-fold cross-validation method and comparison of predicted data with real data, and the results showed that the BN model had good classification and prediction performance. Furthermore, the established BN model was applied to the accident occurred in Huangdao, China. The analysis results show that not only the accident outcome can be accurately predicted, but also the hidden correlation can be deeply explored through the established BN model. The proposed method and findings can provide technical reference for accident investigation and analysis, and provide decision support for accident prevention and risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
万能图书馆应助小废物采纳,获得10
2秒前
李爱国应助健壮的面包采纳,获得10
3秒前
3秒前
4秒前
Xingkun_li发布了新的文献求助10
5秒前
漂亮巧荷完成签到,获得积分20
5秒前
5秒前
大马甲发布了新的文献求助10
6秒前
Tiffany发布了新的文献求助10
7秒前
WWXWWX发布了新的文献求助10
7秒前
8秒前
Betterscience关注了科研通微信公众号
8秒前
王滕发布了新的文献求助10
8秒前
冰姗发布了新的文献求助10
10秒前
12秒前
13秒前
漂亮巧荷发布了新的文献求助20
13秒前
Efan给Efan的求助进行了留言
13秒前
13秒前
彭于彦祖应助郁浅采纳,获得100
14秒前
小猫咪完成签到,获得积分10
14秒前
愉快涵菱完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
每天都在掉头发完成签到,获得积分10
16秒前
坚定的莹完成签到,获得积分10
16秒前
科研大狗发布了新的文献求助10
17秒前
17秒前
17秒前
浮游应助王滕采纳,获得10
18秒前
19秒前
英姑应助WWXWWX采纳,获得10
19秒前
隐形曼青应助赫连烙采纳,获得10
21秒前
renwoxing发布了新的文献求助10
21秒前
22秒前
Yang应助多情的青曼采纳,获得10
22秒前
里里完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507123
求助须知:如何正确求助?哪些是违规求助? 4602518
关于积分的说明 14481925
捐赠科研通 4536520
什么是DOI,文献DOI怎么找? 2486226
邀请新用户注册赠送积分活动 1468816
关于科研通互助平台的介绍 1441292