Accident analysis and risk prediction of tank farm based on Bayesian network method

事故(哲学) 贝叶斯网络 事故分析 可靠性(半导体) 计算机科学 贝叶斯概率 工程类 机器学习 人工智能 可靠性工程 功率(物理) 量子力学 认识论 物理 哲学
作者
Xingguang Wu,Huirong Huang,Weichao Yu,Yuming Lin,Yanhui Xue,Qingwen Cai,Jili Xu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:238 (2): 366-386 被引量:3
标识
DOI:10.1177/1748006x221139906
摘要

In recent decades, many attempts have been made to establish the cause-effect relationship model of accidents, while little work has been carried out to comprehensively consider the interdependence between the causal factors and their complex interactions with the accident outcomes. In this study, a novel accident analysis approach based on Bayesian networks (BNs) was proposed to achieve quantitative accident analysis and dynamic risk prediction of accident types and consequences. To develop the BN-based accident analysis model, a total of 1144 accident cases occurred in tank farm of China from 1960 to 2018 were collected. The BN model that can comprehensively characterize the dependencies among accident elements was established through structural learning based on accident case analysis and parameter learning based on EM algorithm. The reliability and validity of the BN model were verified by k-fold cross-validation method and comparison of predicted data with real data, and the results showed that the BN model had good classification and prediction performance. Furthermore, the established BN model was applied to the accident occurred in Huangdao, China. The analysis results show that not only the accident outcome can be accurately predicted, but also the hidden correlation can be deeply explored through the established BN model. The proposed method and findings can provide technical reference for accident investigation and analysis, and provide decision support for accident prevention and risk management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助yx_cheng采纳,获得10
刚刚
我是老大应助lhz采纳,获得10
1秒前
2秒前
悟川完成签到,获得积分10
2秒前
satchzhao完成签到,获得积分10
3秒前
4秒前
乌拉拉发布了新的文献求助10
4秒前
金元宝完成签到,获得积分10
5秒前
5秒前
勤奋的缘郡完成签到,获得积分20
6秒前
夕杳完成签到,获得积分10
7秒前
浮游应助吉恩采纳,获得10
7秒前
朴实的飞机完成签到 ,获得积分10
7秒前
8秒前
SINET完成签到,获得积分10
9秒前
10秒前
卷王完成签到,获得积分10
11秒前
西啃完成签到,获得积分10
11秒前
12秒前
12秒前
Waris完成签到 ,获得积分10
12秒前
12秒前
小熊同学发布了新的文献求助10
13秒前
饱满的新之完成签到 ,获得积分10
14秒前
封听白完成签到,获得积分0
14秒前
16秒前
小蘑菇应助柔弱向梦采纳,获得10
16秒前
Hello应助桃桃星冰乐采纳,获得10
16秒前
charint发布了新的文献求助10
16秒前
17秒前
Ran发布了新的文献求助10
17秒前
牛牛完成签到,获得积分10
19秒前
斯文败类应助Zxc采纳,获得10
19秒前
bkagyin应助聪慧橘子采纳,获得10
20秒前
司空三毒发布了新的文献求助10
21秒前
21秒前
Xiao_Fu发布了新的文献求助10
21秒前
迷你的隶完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425513
求助须知:如何正确求助?哪些是违规求助? 4539563
关于积分的说明 14168510
捐赠科研通 4457109
什么是DOI,文献DOI怎么找? 2444423
邀请新用户注册赠送积分活动 1435362
关于科研通互助平台的介绍 1412800