Accident analysis and risk prediction of tank farm based on Bayesian network method

事故(哲学) 贝叶斯网络 事故分析 可靠性(半导体) 计算机科学 贝叶斯概率 工程类 机器学习 人工智能 可靠性工程 功率(物理) 量子力学 认识论 物理 哲学
作者
Xingguang Wu,Huirong Huang,Weichao Yu,Yuming Lin,Yanhui Xue,Qingwen Cai,Jili Xu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:238 (2): 366-386 被引量:3
标识
DOI:10.1177/1748006x221139906
摘要

In recent decades, many attempts have been made to establish the cause-effect relationship model of accidents, while little work has been carried out to comprehensively consider the interdependence between the causal factors and their complex interactions with the accident outcomes. In this study, a novel accident analysis approach based on Bayesian networks (BNs) was proposed to achieve quantitative accident analysis and dynamic risk prediction of accident types and consequences. To develop the BN-based accident analysis model, a total of 1144 accident cases occurred in tank farm of China from 1960 to 2018 were collected. The BN model that can comprehensively characterize the dependencies among accident elements was established through structural learning based on accident case analysis and parameter learning based on EM algorithm. The reliability and validity of the BN model were verified by k-fold cross-validation method and comparison of predicted data with real data, and the results showed that the BN model had good classification and prediction performance. Furthermore, the established BN model was applied to the accident occurred in Huangdao, China. The analysis results show that not only the accident outcome can be accurately predicted, but also the hidden correlation can be deeply explored through the established BN model. The proposed method and findings can provide technical reference for accident investigation and analysis, and provide decision support for accident prevention and risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纸条条完成签到 ,获得积分10
3秒前
elsa622完成签到 ,获得积分10
5秒前
陈M雯完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
痴情的靖柔完成签到 ,获得积分10
8秒前
clwh2006完成签到,获得积分10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
十二倍根号二完成签到,获得积分10
17秒前
23秒前
LiangRen完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
27秒前
wuyan204完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
我很好完成签到 ,获得积分10
32秒前
jason完成签到 ,获得积分10
34秒前
略略略爱完成签到 ,获得积分10
39秒前
39秒前
大汤圆圆完成签到 ,获得积分10
40秒前
44秒前
量子星尘发布了新的文献求助10
47秒前
guzhenyang完成签到,获得积分10
47秒前
碧蓝可仁完成签到 ,获得积分10
50秒前
yaomax完成签到 ,获得积分10
53秒前
熊雅完成签到,获得积分10
54秒前
lyu完成签到,获得积分10
54秒前
shenmeijing完成签到 ,获得积分10
59秒前
花样年华完成签到,获得积分10
1分钟前
Xiaoyisheng完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
无幻完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lanxinge完成签到 ,获得积分10
1分钟前
ssk完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856