Accident analysis and risk prediction of tank farm based on Bayesian network method

事故(哲学) 贝叶斯网络 事故分析 可靠性(半导体) 计算机科学 贝叶斯概率 工程类 机器学习 人工智能 可靠性工程 功率(物理) 量子力学 认识论 物理 哲学
作者
Xingguang Wu,Huirong Huang,Weichao Yu,Yuming Lin,Yanhui Xue,Qingwen Cai,Jili Xu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE Publishing]
卷期号:238 (2): 366-386 被引量:3
标识
DOI:10.1177/1748006x221139906
摘要

In recent decades, many attempts have been made to establish the cause-effect relationship model of accidents, while little work has been carried out to comprehensively consider the interdependence between the causal factors and their complex interactions with the accident outcomes. In this study, a novel accident analysis approach based on Bayesian networks (BNs) was proposed to achieve quantitative accident analysis and dynamic risk prediction of accident types and consequences. To develop the BN-based accident analysis model, a total of 1144 accident cases occurred in tank farm of China from 1960 to 2018 were collected. The BN model that can comprehensively characterize the dependencies among accident elements was established through structural learning based on accident case analysis and parameter learning based on EM algorithm. The reliability and validity of the BN model were verified by k-fold cross-validation method and comparison of predicted data with real data, and the results showed that the BN model had good classification and prediction performance. Furthermore, the established BN model was applied to the accident occurred in Huangdao, China. The analysis results show that not only the accident outcome can be accurately predicted, but also the hidden correlation can be deeply explored through the established BN model. The proposed method and findings can provide technical reference for accident investigation and analysis, and provide decision support for accident prevention and risk management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助陌路采纳,获得10
1秒前
1秒前
曼凡发布了新的文献求助10
1秒前
芋泥泥泥完成签到,获得积分10
1秒前
啃猫爪发布了新的文献求助10
2秒前
viauue9完成签到,获得积分10
2秒前
ding发布了新的文献求助50
4秒前
芋泥泥泥发布了新的文献求助10
5秒前
6秒前
高贵伟诚完成签到,获得积分10
6秒前
没有昵称发布了新的文献求助10
7秒前
华仔应助viauue9采纳,获得10
8秒前
念姬给念姬的求助进行了留言
8秒前
9秒前
10秒前
Jasper应助啃猫爪采纳,获得10
11秒前
cco完成签到,获得积分10
12秒前
Flora发布了新的文献求助50
12秒前
12秒前
Owen应助Wind采纳,获得10
14秒前
14秒前
小蘑菇应助体贴汽车采纳,获得10
16秒前
16秒前
坚定的凝云完成签到 ,获得积分10
17秒前
冷萃发布了新的文献求助10
17秒前
星辰大海应助xunl采纳,获得10
18秒前
林希希发布了新的文献求助10
18秒前
19秒前
Wjh123456完成签到,获得积分10
19秒前
汉桑波欸完成签到,获得积分10
20秒前
wy.he应助Lv采纳,获得10
21秒前
21秒前
21秒前
Flora完成签到,获得积分10
22秒前
xss完成签到 ,获得积分10
22秒前
22秒前
23秒前
23秒前
17发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163719
捐赠科研通 3247427
什么是DOI,文献DOI怎么找? 1793827
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804488