Radiomics Based on Dynamic Contrast-Enhanced MRI to Early Predict Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Therapy

医学 无线电技术 乳腺癌 磁共振成像 逻辑回归 新辅助治疗 Lasso(编程语言) 接收机工作特性 病态的 核医学 放射科 癌症 内科学 计算机科学 万维网
作者
Qiao Zeng,Mengmeng Ke,Linhua Zhong,Yongjie Zhou,Xuechao Zhu,Chongwu He,Lan Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (8): 1638-1647 被引量:14
标识
DOI:10.1016/j.acra.2022.11.006
摘要

Rationale and objectives

To investigate the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-based radiomics at baseline and after two cycles of neoadjuvant therapy (NAT) and associated longitudinal changes for early prediction of the NAT response in patients with breast cancer.

Materials and Methods

One hundred seventeen patients with breast cancer who underwent DCE-MRI before NAT and after two cycles of NAT from April 2019 to November 2021 were enrolled retrospectively. Patients were randomly divided into a training set (n = 81) and a test set (n = 36) at a ratio of 7:3. Clinical-pathological data and the relative tumor maximum diameter regression value (diameter%) were also collected. A total of 851 radiomic features were extracted from the phase with the most pronounced tumor enhancement on DCE-MRI T1 imaging acquired both pre- and post-treatment. Delta and delta% radiomics features were also calculated. The Least Absolute Shrinkage and Selection Operator (LASSO) method was applied to select features, and a logistic regression model was used to calculate pre-NAT, early-NAT, delta, and delta% radscores and then select among four radscores to build a Fusion radiomics model. The final clinical-radiomics model was constructed by combining fusion radscores and clinical-pathological variables. The discrimination and clinical utility of the models were further evaluated and compared.

Results

The area under the curve (AUC) values of the fusion radiomics model based on pre-NAT, Delta, and Delta% radscores were 0.868 of 0.825. The clinical-radiomics model integrating Fusion radscores and clinical-pathological variables achieved AUC values of 0.920 of 0.884, which were higher than those of the clinical model constructed by AUC values (0.858/0.831), although no significant improvement was observed in the test set (Delong test, p = 0.196). Decision curve analysis (DCA) showed that the clinical-radiomics model demonstrated more clinical utility than the clinical model.

Conclusion

DCE-MRI-based radiomics features may have potential for pathological complete response (pCR) prediction in the early phase of NAT. By combining radiomics features and clinical-pathological characteristics, higher diagnostic performance can be achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淞淞于我完成签到 ,获得积分10
刚刚
花花发布了新的文献求助10
刚刚
灵巧的朝雪完成签到 ,获得积分10
2秒前
陈秋完成签到,获得积分10
4秒前
跳跃的鹏飞完成签到 ,获得积分0
9秒前
哥哥发布了新的文献求助10
9秒前
xgx984完成签到,获得积分10
10秒前
leemiii完成签到 ,获得积分10
28秒前
Lyw完成签到 ,获得积分10
32秒前
夕阳下仰望完成签到 ,获得积分10
34秒前
陌上完成签到 ,获得积分10
40秒前
单纯的小土豆完成签到 ,获得积分0
42秒前
guoxihan完成签到,获得积分10
51秒前
puritan完成签到 ,获得积分10
51秒前
沉静香氛完成签到 ,获得积分10
52秒前
枯叶蝶完成签到 ,获得积分10
53秒前
ramsey33完成签到 ,获得积分10
58秒前
麦田麦兜完成签到,获得积分10
1分钟前
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
1分钟前
夜未央完成签到 ,获得积分10
1分钟前
DZS完成签到 ,获得积分10
1分钟前
wml发布了新的文献求助10
1分钟前
七厘米发布了新的文献求助10
1分钟前
506407完成签到,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分0
1分钟前
liukanhai完成签到,获得积分10
1分钟前
豆⑧完成签到,获得积分10
1分钟前
不劳而获完成签到 ,获得积分10
1分钟前
JUN完成签到,获得积分10
1分钟前
shacodow完成签到,获得积分10
1分钟前
ll完成签到,获得积分10
1分钟前
瞿人雄完成签到,获得积分10
1分钟前
龙弟弟完成签到 ,获得积分10
1分钟前
没心没肺完成签到,获得积分10
1分钟前
学术霸王完成签到,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
sheetung完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370