Adsorption of organic dyes onto nanozeolites: A machine learning study

吸附 背景(考古学) 废水 工艺工程 过程(计算) 响应面法 环境科学 计算机科学 生化工程 化学 制浆造纸工业 废物管理 化学工程 环境工程 机器学习 有机化学 工程类 操作系统 生物 古生物学
作者
Leandro Rodrigues Oviedo,Vinícius Rodrigues Oviedo,Lissandro Dorneles Dalla Nora,William Leonardo da Silva
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:315: 123712-123712 被引量:29
标识
DOI:10.1016/j.seppur.2023.123712
摘要

Wastewater pollution with organic dyes has generated great concern in society due to the hazardous effects these contaminants pose to humans and aquatic life. In this view, the application of the adsorption process using nanoadsorbents has been a promising alternative due to the relatively low cost, high efficiency and simple operation. In addition, nanozeolites were highlighted in scientific literature due to their properties (surface area, porosity, ion exchange capacity, chemical and thermal stability), being useful for dye removal from wastewater. However, time and cost in experimental procedures are required to find optimal conditions for the adsorption of dyes onto these nanozeolites. Therefore, machine learning methods have emerged as a suitable tool for the prediction of the adsorption capacity of the nanoadsorbents in an efficient manner, being capable of recognizing patterns in the process and addressing the process feasibility. In this context, the present work aims to develop a machine learning (ML) study of the adsorption of organic dye onto nanozeolites and to identify the main variables that affect the adsorption capacity and removal of organic dye from wastewater. Thus, four ML algorithms (RF, LGB, XBG, and ANN) were tested as a regression model. This study revealed that XBG showed the best performance in comparison to the other models, being suitable in the prediction of adsorption capacities of nanozeolites for cationic dyes. Additionally, an exploratory analysis and hypothesis testing confirmed the great effect of the dye and nanoadsorbent concentrations, contact time and pH in the adsorption process. Therefore, the XGB proved to be capable to address the predicted adsorption capacity of nanozeolite from a relatively small dataset, being characterized as a starting point before experimental procedures and scale-up of wastewater treatment concerned with organic dye removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SHDeathlock发布了新的文献求助200
刚刚
Owen应助醒醒采纳,获得10
刚刚
无心的代桃完成签到,获得积分10
1秒前
追寻代真完成签到,获得积分10
1秒前
晓兴兴完成签到,获得积分10
1秒前
leon发布了新的文献求助10
2秒前
洽洽瓜子shine完成签到,获得积分10
2秒前
简单的大白菜真实的钥匙完成签到,获得积分10
3秒前
4秒前
一独白完成签到,获得积分10
5秒前
在水一方应助坚强的樱采纳,获得10
5秒前
慕青应助尼亚吉拉采纳,获得10
6秒前
快乐小白菜应助甜酱采纳,获得10
6秒前
6秒前
qq应助毛慢慢采纳,获得10
7秒前
7秒前
科研通AI5应助吴岳采纳,获得10
7秒前
天天快乐应助ufuon采纳,获得10
8秒前
科研通AI5应助一独白采纳,获得10
9秒前
hearts_j完成签到,获得积分10
9秒前
FashionBoy应助yasan采纳,获得10
9秒前
安琪琪完成签到,获得积分10
10秒前
10秒前
端庄千琴完成签到,获得积分10
10秒前
gaogao完成签到,获得积分10
10秒前
菲菲公主完成签到,获得积分10
11秒前
11秒前
11秒前
英姑应助柒八染采纳,获得10
12秒前
退堂鼓发布了新的文献求助10
12秒前
党弛完成签到,获得积分10
12秒前
12秒前
13秒前
烂漫的松完成签到,获得积分10
13秒前
cheryl完成签到,获得积分10
13秒前
笑笑发布了新的文献求助10
14秒前
15秒前
16秒前
糟糕的霆完成签到 ,获得积分10
16秒前
婷婷发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762