Adsorption of organic dyes onto nanozeolites: A machine learning study

吸附 背景(考古学) 废水 工艺工程 过程(计算) 响应面法 环境科学 计算机科学 生化工程 化学 制浆造纸工业 废物管理 化学工程 环境工程 机器学习 有机化学 工程类 古生物学 生物 操作系统
作者
Leandro Rodrigues Oviedo,Vinícius Rodrigues Oviedo,Lissandro Dorneles Dalla Nora,William Leonardo da Silva
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:315: 123712-123712 被引量:29
标识
DOI:10.1016/j.seppur.2023.123712
摘要

Wastewater pollution with organic dyes has generated great concern in society due to the hazardous effects these contaminants pose to humans and aquatic life. In this view, the application of the adsorption process using nanoadsorbents has been a promising alternative due to the relatively low cost, high efficiency and simple operation. In addition, nanozeolites were highlighted in scientific literature due to their properties (surface area, porosity, ion exchange capacity, chemical and thermal stability), being useful for dye removal from wastewater. However, time and cost in experimental procedures are required to find optimal conditions for the adsorption of dyes onto these nanozeolites. Therefore, machine learning methods have emerged as a suitable tool for the prediction of the adsorption capacity of the nanoadsorbents in an efficient manner, being capable of recognizing patterns in the process and addressing the process feasibility. In this context, the present work aims to develop a machine learning (ML) study of the adsorption of organic dye onto nanozeolites and to identify the main variables that affect the adsorption capacity and removal of organic dye from wastewater. Thus, four ML algorithms (RF, LGB, XBG, and ANN) were tested as a regression model. This study revealed that XBG showed the best performance in comparison to the other models, being suitable in the prediction of adsorption capacities of nanozeolites for cationic dyes. Additionally, an exploratory analysis and hypothesis testing confirmed the great effect of the dye and nanoadsorbent concentrations, contact time and pH in the adsorption process. Therefore, the XGB proved to be capable to address the predicted adsorption capacity of nanozeolite from a relatively small dataset, being characterized as a starting point before experimental procedures and scale-up of wastewater treatment concerned with organic dye removal.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的天蓉完成签到 ,获得积分10
刚刚
1秒前
传奇3应助Shaw采纳,获得10
1秒前
wanci应助元谷雪采纳,获得10
2秒前
whuyyz完成签到,获得积分10
2秒前
zhuding1978完成签到,获得积分10
2秒前
2秒前
逗逗完成签到,获得积分10
2秒前
空白格完成签到 ,获得积分10
2秒前
2秒前
SilverPlane完成签到,获得积分10
3秒前
Rainlistener应助科研通管家采纳,获得10
3秒前
xfy应助科研通管家采纳,获得10
3秒前
感动水杯完成签到 ,获得积分10
4秒前
4秒前
Rainlistener应助科研通管家采纳,获得10
4秒前
Rainlistener应助科研通管家采纳,获得10
4秒前
冷漠的布丁完成签到,获得积分10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
重要的小丸子完成签到,获得积分10
5秒前
5秒前
李伟发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
明天又是美好的一天完成签到 ,获得积分10
6秒前
HAO发布了新的文献求助10
6秒前
7秒前
bobo完成签到,获得积分10
7秒前
茄子完成签到,获得积分10
8秒前
hyfwkd完成签到,获得积分10
8秒前
8秒前
顺利毕业发布了新的文献求助10
8秒前
BrandNew。发布了新的文献求助10
8秒前
10秒前
牛牛完成签到,获得积分10
10秒前
JMrider发布了新的文献求助10
10秒前
快乐真完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197