Adsorption of organic dyes onto nanozeolites: A machine learning study

吸附 背景(考古学) 废水 工艺工程 过程(计算) 响应面法 环境科学 计算机科学 生化工程 化学 制浆造纸工业 废物管理 化学工程 环境工程 机器学习 有机化学 工程类 操作系统 生物 古生物学
作者
Leandro Rodrigues Oviedo,Vinícius Rodrigues Oviedo,Lissandro Dorneles Dalla Nora,William Leonardo da Silva
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:315: 123712-123712 被引量:29
标识
DOI:10.1016/j.seppur.2023.123712
摘要

Wastewater pollution with organic dyes has generated great concern in society due to the hazardous effects these contaminants pose to humans and aquatic life. In this view, the application of the adsorption process using nanoadsorbents has been a promising alternative due to the relatively low cost, high efficiency and simple operation. In addition, nanozeolites were highlighted in scientific literature due to their properties (surface area, porosity, ion exchange capacity, chemical and thermal stability), being useful for dye removal from wastewater. However, time and cost in experimental procedures are required to find optimal conditions for the adsorption of dyes onto these nanozeolites. Therefore, machine learning methods have emerged as a suitable tool for the prediction of the adsorption capacity of the nanoadsorbents in an efficient manner, being capable of recognizing patterns in the process and addressing the process feasibility. In this context, the present work aims to develop a machine learning (ML) study of the adsorption of organic dye onto nanozeolites and to identify the main variables that affect the adsorption capacity and removal of organic dye from wastewater. Thus, four ML algorithms (RF, LGB, XBG, and ANN) were tested as a regression model. This study revealed that XBG showed the best performance in comparison to the other models, being suitable in the prediction of adsorption capacities of nanozeolites for cationic dyes. Additionally, an exploratory analysis and hypothesis testing confirmed the great effect of the dye and nanoadsorbent concentrations, contact time and pH in the adsorption process. Therefore, the XGB proved to be capable to address the predicted adsorption capacity of nanozeolite from a relatively small dataset, being characterized as a starting point before experimental procedures and scale-up of wastewater treatment concerned with organic dye removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
三分糖完成签到,获得积分20
2秒前
林泉发布了新的文献求助30
3秒前
3秒前
4秒前
mengshang完成签到,获得积分10
6秒前
酷波er应助bb采纳,获得10
6秒前
PG完成签到,获得积分10
6秒前
李雪瑞发布了新的文献求助10
7秒前
传奇3应助KHZhang采纳,获得10
7秒前
上官若男应助KHZhang采纳,获得10
7秒前
Owen应助KHZhang采纳,获得10
7秒前
外向渊思完成签到 ,获得积分10
8秒前
hynni完成签到,获得积分10
8秒前
一条鱼叫弗里登完成签到 ,获得积分10
8秒前
三分糖发布了新的文献求助10
9秒前
wanci应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得30
10秒前
科目三应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
12秒前
等待的晓亦完成签到 ,获得积分10
12秒前
坚强的鸡翅完成签到,获得积分10
13秒前
浮游应助通通真行采纳,获得10
14秒前
14秒前
一水合羟基磷酸钙完成签到,获得积分10
14秒前
Akim应助geoman采纳,获得10
14秒前
14秒前
疯子不风完成签到,获得积分10
15秒前
共享精神应助从容以山采纳,获得10
16秒前
曹颖完成签到,获得积分10
17秒前
xiao刘发布了新的文献求助10
18秒前
Simpson完成签到 ,获得积分0
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225925
求助须知:如何正确求助?哪些是违规求助? 4397578
关于积分的说明 13686733
捐赠科研通 4262055
什么是DOI,文献DOI怎么找? 2338915
邀请新用户注册赠送积分活动 1336294
关于科研通互助平台的介绍 1292263