Adsorption of organic dyes onto nanozeolites: A machine learning study

吸附 背景(考古学) 废水 工艺工程 过程(计算) 响应面法 环境科学 计算机科学 生化工程 化学 制浆造纸工业 废物管理 化学工程 环境工程 机器学习 有机化学 工程类 古生物学 生物 操作系统
作者
Leandro Rodrigues Oviedo,Vinícius Rodrigues Oviedo,Lissandro Dorneles Dalla Nora,William Leonardo da Silva
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:315: 123712-123712 被引量:29
标识
DOI:10.1016/j.seppur.2023.123712
摘要

Wastewater pollution with organic dyes has generated great concern in society due to the hazardous effects these contaminants pose to humans and aquatic life. In this view, the application of the adsorption process using nanoadsorbents has been a promising alternative due to the relatively low cost, high efficiency and simple operation. In addition, nanozeolites were highlighted in scientific literature due to their properties (surface area, porosity, ion exchange capacity, chemical and thermal stability), being useful for dye removal from wastewater. However, time and cost in experimental procedures are required to find optimal conditions for the adsorption of dyes onto these nanozeolites. Therefore, machine learning methods have emerged as a suitable tool for the prediction of the adsorption capacity of the nanoadsorbents in an efficient manner, being capable of recognizing patterns in the process and addressing the process feasibility. In this context, the present work aims to develop a machine learning (ML) study of the adsorption of organic dye onto nanozeolites and to identify the main variables that affect the adsorption capacity and removal of organic dye from wastewater. Thus, four ML algorithms (RF, LGB, XBG, and ANN) were tested as a regression model. This study revealed that XBG showed the best performance in comparison to the other models, being suitable in the prediction of adsorption capacities of nanozeolites for cationic dyes. Additionally, an exploratory analysis and hypothesis testing confirmed the great effect of the dye and nanoadsorbent concentrations, contact time and pH in the adsorption process. Therefore, the XGB proved to be capable to address the predicted adsorption capacity of nanozeolite from a relatively small dataset, being characterized as a starting point before experimental procedures and scale-up of wastewater treatment concerned with organic dye removal.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
printzhao发布了新的文献求助10
2秒前
2秒前
neufy完成签到,获得积分10
2秒前
搬砖人发布了新的文献求助10
3秒前
3秒前
文俊伟发布了新的文献求助10
3秒前
内向如松发布了新的文献求助30
5秒前
6秒前
6秒前
7秒前
万能图书馆应助luobeimin采纳,获得10
7秒前
7秒前
FashionBoy应助非言墨语采纳,获得10
7秒前
8秒前
传奇3应助陈一朵采纳,获得10
9秒前
顾矜应助文俊伟采纳,获得10
9秒前
9秒前
10秒前
林林林林发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
田宇22333发布了新的文献求助10
13秒前
14秒前
汉堡包应助这波你的吗采纳,获得10
16秒前
轻松雁蓉发布了新的文献求助10
16秒前
17秒前
汉堡包应助深情海亦采纳,获得10
18秒前
zhong发布了新的文献求助10
18秒前
20秒前
djbj2022发布了新的文献求助10
20秒前
Jasper应助小马嘻嘻采纳,获得10
20秒前
20秒前
liyantong完成签到 ,获得积分10
21秒前
大个应助易烊千玺老婆采纳,获得10
21秒前
好好应助易烊千玺老婆采纳,获得10
21秒前
阿靖发布了新的文献求助30
21秒前
橙酒完成签到,获得积分10
21秒前
Sherlock完成签到,获得积分10
22秒前
22秒前
LizzyBronze发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610157
求助须知:如何正确求助?哪些是违规求助? 4694672
关于积分的说明 14883860
捐赠科研通 4721346
什么是DOI,文献DOI怎么找? 2545014
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039