Adsorption of organic dyes onto nanozeolites: A machine learning study

吸附 背景(考古学) 废水 工艺工程 过程(计算) 响应面法 环境科学 计算机科学 生化工程 化学 制浆造纸工业 废物管理 化学工程 环境工程 机器学习 有机化学 工程类 操作系统 生物 古生物学
作者
Leandro Rodrigues Oviedo,Vinícius Rodrigues Oviedo,Lissandro Dorneles Dalla Nora,William Leonardo da Silva
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:315: 123712-123712 被引量:29
标识
DOI:10.1016/j.seppur.2023.123712
摘要

Wastewater pollution with organic dyes has generated great concern in society due to the hazardous effects these contaminants pose to humans and aquatic life. In this view, the application of the adsorption process using nanoadsorbents has been a promising alternative due to the relatively low cost, high efficiency and simple operation. In addition, nanozeolites were highlighted in scientific literature due to their properties (surface area, porosity, ion exchange capacity, chemical and thermal stability), being useful for dye removal from wastewater. However, time and cost in experimental procedures are required to find optimal conditions for the adsorption of dyes onto these nanozeolites. Therefore, machine learning methods have emerged as a suitable tool for the prediction of the adsorption capacity of the nanoadsorbents in an efficient manner, being capable of recognizing patterns in the process and addressing the process feasibility. In this context, the present work aims to develop a machine learning (ML) study of the adsorption of organic dye onto nanozeolites and to identify the main variables that affect the adsorption capacity and removal of organic dye from wastewater. Thus, four ML algorithms (RF, LGB, XBG, and ANN) were tested as a regression model. This study revealed that XBG showed the best performance in comparison to the other models, being suitable in the prediction of adsorption capacities of nanozeolites for cationic dyes. Additionally, an exploratory analysis and hypothesis testing confirmed the great effect of the dye and nanoadsorbent concentrations, contact time and pH in the adsorption process. Therefore, the XGB proved to be capable to address the predicted adsorption capacity of nanozeolite from a relatively small dataset, being characterized as a starting point before experimental procedures and scale-up of wastewater treatment concerned with organic dye removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小唐完成签到,获得积分10
1秒前
YY再摆烂发布了新的文献求助10
2秒前
3秒前
shiqiang mu应助哆来米采纳,获得10
4秒前
4秒前
nc发布了新的文献求助10
4秒前
AN关闭了AN文献求助
5秒前
Kaleem发布了新的文献求助10
7秒前
ddd完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
14秒前
16秒前
南宫硕发布了新的文献求助10
20秒前
忐忑的驳完成签到 ,获得积分10
20秒前
无辜的醉波完成签到,获得积分10
21秒前
天天快乐应助Kaleem采纳,获得10
22秒前
22秒前
晨曦呢发布了新的文献求助10
22秒前
24秒前
头顶花盆降碳关注了科研通微信公众号
25秒前
26秒前
共享精神应助鲁滨逊采纳,获得10
26秒前
26秒前
Snoopy发布了新的文献求助10
27秒前
陈末应助开心的绮玉采纳,获得10
27秒前
29秒前
独特的元霜完成签到,获得积分10
29秒前
丘比特应助晨曦呢采纳,获得10
29秒前
今后应助123采纳,获得10
32秒前
33秒前
一一发布了新的文献求助10
33秒前
青筠发布了新的文献求助10
36秒前
38秒前
xxm发布了新的文献求助10
43秒前
yka8150完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助30
48秒前
小蘑菇应助南枝采纳,获得10
48秒前
闲鱼耶鹤完成签到 ,获得积分10
48秒前
50秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425194
求助须知:如何正确求助?哪些是违规求助? 4539312
关于积分的说明 14166764
捐赠科研通 4456502
什么是DOI,文献DOI怎么找? 2444225
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568