自愈水凝胶
纳米技术
医疗保健
计算机科学
材料科学
化学
经济增长
经济
高分子化学
作者
Zhenwu Wang,Hua Wei,Youju Huang,Yen Wei,Jing Chen
摘要
The flourishing development of flexible healthcare sensing systems is inseparable from the fundamental materials with application-oriented mechanical and electrical properties. Thanks to continuous inspiration from our Mother Nature, flexible hydrogels originating from natural biomass are attracting growing attention for their structural and functional designs owing to their unique chemical, physical and biological properties. These highly efficient architectural and functional designs enable them to be the most promising candidates for flexible electronic sensing devices. This comprehensive review focuses on the recent advances in naturally sourced hydrogels for constructing multi-functional flexible sensors and healthcare applications thereof. We first briefly introduce representative natural polymers, including polysaccharides, proteins, and polypeptides, and summarize their unique physicochemical properties. The design principles and fabrication strategies for hydrogel sensors based on these representative natural polymers are outlined after the fundamental material properties required in healthcare sensing applications are presented. We then highlight the various fabrication techniques of natural hydrogels for sensing devices, and illustrate the representative examples of wearable or implantable bioelectronics for pressure, strain, temperature, or biomarker sensing in the field of healthcare systems. Finally, concluding remarks on challenges and prospects in the development of natural hydrogel-based flexible sensors are provided. We hope that this review will provide valuable information for the development of next-generation bioelectronics and build a bridge between the natural hydrogels as fundamental matter and multi-functional healthcare sensing as an applied target to accelerate new material design in the near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI