Incremental unsupervised feature selection for dynamic incomplete multi-view data

计算机科学 特征选择 聚类分析 特征(语言学) 人工智能 维数之咒 数据挖掘 降维 机器学习 选择(遗传算法) 模式识别(心理学) 哲学 语言学
作者
Yanyong Huang,Kejun Guo,Xiuwen Yi,Zhong Li,Tianrui Li
出处
期刊:Information Fusion [Elsevier BV]
卷期号:96: 312-327 被引量:11
标识
DOI:10.1016/j.inffus.2023.03.018
摘要

Multi-view unsupervised feature selection has been proven to be efficient in reducing the dimensionality of multi-view unlabeled data with high dimensions. The previous methods assume that all views are complete. However, in real applications, the multi-view data are often incomplete, i.e., some views of instances are missing, which will result in the failure of these methods. Besides, while the data arrive in form of streams, these existing methods will suffer the issues of high storage cost and expensive computation time. To address these issues, we propose an Incremental Incomplete Multi-view Unsupervised Feature Selection method (I2MUFS) on incomplete multi-view streaming data. By jointly considering the consistent and complementary information across different views, I2MUFS embeds the unsupervised feature selection into an extended weighted non-negative matrix factorization model, which can learn a consensus clustering indicator matrix and fuse different latent feature matrices with adaptive view weights. Furthermore, we introduce the incremental learning mechanisms to develop an alternative iterative algorithm, where the feature selection matrix is incrementally updated, rather than recomputing on the entire updated data from scratch. A series of experiments are conducted to verify the effectiveness of the proposed method by comparing with several state-of-the-art methods. The experimental results demonstrate the effectiveness and efficiency of the proposed method in terms of the clustering metrics and the computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑发布了新的文献求助10
刚刚
1秒前
1378904289发布了新的文献求助20
1秒前
无花果应助张老师采纳,获得10
1秒前
1秒前
大模型应助xiamu采纳,获得10
2秒前
Crazy_Runner发布了新的文献求助10
3秒前
gzh发布了新的文献求助10
4秒前
4秒前
迟大猫应助China采纳,获得10
5秒前
Nyota完成签到,获得积分10
6秒前
Wying完成签到,获得积分10
6秒前
Zo发布了新的文献求助10
6秒前
DMC北风过境完成签到,获得积分10
7秒前
mm发布了新的文献求助10
8秒前
9秒前
李爱国应助杨某某采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
卖粥的果完成签到 ,获得积分10
11秒前
Raymond应助China采纳,获得10
13秒前
科研通AI5应助小五采纳,获得10
13秒前
Leechel完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
晨曦将至完成签到,获得积分10
15秒前
16秒前
让地球种满香菜完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
科研小陈发布了新的文献求助10
16秒前
17秒前
研友_ZGD9o8发布了新的文献求助10
17秒前
jiaojiao发布了新的文献求助10
17秒前
超体发布了新的文献求助30
18秒前
星辰大海应助晴晴采纳,获得10
18秒前
科研通AI5应助David采纳,获得10
19秒前
雷霆万钧完成签到 ,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3658707
求助须知:如何正确求助?哪些是违规求助? 3220706
关于积分的说明 9737132
捐赠科研通 2929876
什么是DOI,文献DOI怎么找? 1604142
邀请新用户注册赠送积分活动 757000
科研通“疑难数据库(出版商)”最低求助积分说明 734269