The Association Between Insulin Use and Asthma: An Epidemiological Observational Analysis and Mendelian Randomization Study

孟德尔随机化 哮喘 医学 队列 胰岛素 糖尿病 流行病学 队列研究 全国健康与营养检查调查 人口 内科学 环境卫生 内分泌学 生物 生物化学 遗传变异 基因 基因型
作者
Zikai Lin,Junfeng Huang,Shuojia Xie,Ziwen Zheng,Kailun Tang,Shiyue Li,Ruchong Chen
出处
期刊:Lung [Springer Nature]
卷期号:201 (2): 189-199 被引量:10
标识
DOI:10.1007/s00408-023-00611-z
摘要

Asthma is a common respiratory disease caused by genetic and environmental factors, but the contribution of insulin use to the risk of asthma remains unclear. This study aimed to investigate the association between insulin use and asthma in a large population-based cohort, and further explore their causal relationship by Mendelian randomization (MR) analysis. An epidemiological study including 85,887 participants from the National Health and Nutrition Examination Survey (NHANES) 2001–2018 was performed to evaluate the association between insulin use and asthma. Based on the inverse-variance weighted approach, MR analysis were conducted to estimate the causal effect of insulin use on asthma from the UKB and FinnGen datasets, respectively. In the NHANES cohort, we found that insulin use was associated with an increased risk of asthma [odd ratio (OR) 1.38; 95% CI 1.16–1.64; p < 0.001]. For the MR analysis, we found a causal relationship between insulin use and a higher risk of asthma in both Finn (OR 1.10; p < 0.001) and UK Biobank cohorts (OR 1.18; p < 0.001). Meanwhile, there was no causal association between diabetes and asthma. After multivariable adjustment for diabetes in UKB cohort, the insulin use remained significantly associated with an increased risk of asthma (OR 1.17, p < 0.001). An association between insulin use and an increased risk of asthma was found via the real-world data from the NHANES. In addition, the current study identified a causal effect and provided a genetic evidence of insulin use and asthma. More studies are needed to elucidate the mechanisms underlying the association between insulin use and asthma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑雁风完成签到,获得积分20
刚刚
刚刚
刚刚
秦长春完成签到,获得积分20
刚刚
光电发布了新的文献求助10
1秒前
烟花应助张yang采纳,获得10
2秒前
2秒前
2秒前
2秒前
踏实十三完成签到,获得积分10
3秒前
超级翠应助wanghao采纳,获得10
3秒前
eraygt完成签到,获得积分10
3秒前
3秒前
认真的奇异果完成签到 ,获得积分10
3秒前
3秒前
小木关注了科研通微信公众号
3秒前
祺屿梦完成签到,获得积分10
4秒前
yangts2021发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
张伟发布了新的文献求助10
5秒前
5秒前
5秒前
CodeCraft应助杨媛采纳,获得10
6秒前
SciGPT应助liqianniu采纳,获得10
6秒前
7秒前
zzz发布了新的文献求助10
7秒前
DI完成签到,获得积分10
7秒前
罗莹完成签到,获得积分10
8秒前
情怀应助棒棒的红红采纳,获得10
8秒前
8秒前
serendipity发布了新的文献求助10
9秒前
cwy发布了新的文献求助10
9秒前
Novice6354完成签到 ,获得积分10
9秒前
大个应助单薄的夜阑采纳,获得30
9秒前
意未清完成签到,获得积分10
9秒前
10秒前
DerekFan完成签到,获得积分10
10秒前
所所应助Jackie采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482