错误发现率
计算机科学
推论
聚类分析
骨料(复合)
多重比较问题
数据挖掘
核(代数)
统计假设检验
算法
比例(比率)
统计推断
模式识别(心理学)
系列(地层学)
人工智能
数学
统计
古生物学
生物化学
化学
材料科学
物理
组合数学
量子力学
生物
复合材料
基因
作者
Yixin Han,Yunlong Wang,Zhaojun Wang
出处
期刊:Stat
[Wiley]
日期:2023-01-01
卷期号:12 (1)
摘要
We consider a spatial multiple‐testing problem for large‐scale data with clustered signals. The clustering pattern of signals enlightens us to aggregate the neighbouring information for better statistical inference. We design a novel spatial‐assisted procedure via kernel‐based aggregation, automatically incorporating spatially localized mode of significant signal regions. More specifically, we utilize a sample‐splitting strategy to construct a series of marginal symmetric statistics and a data‐adaptive threshold for false discovery rate (FDR) control. Theoretical results show that the proposed method controls the desired FDR asymptotically under mild conditions. Simulation studies and a functional magnetic resonance imaging data application confirm the advantages of our methodology in terms of FDR control and power improvement.
科研通智能强力驱动
Strongly Powered by AbleSci AI