数学
超临界流体
马鞍
鞍点
子空间拓扑
数学分析
紧凑空间
拉格朗日乘数
对称化
类型(生物学)
数学物理
几何学
物理
数学优化
热力学
生物
生态学
标识
DOI:10.1016/j.jde.2023.03.049
摘要
We investigate the existence of saddle type normalized solutions for the nonlinear Choquard equation:{−Δu−λu=(Iα⁎F(u))F′(u), in RN∫RN|u|2dx=a2,u∈H1(RN). Here N≥1, a>0 is given in advance, Iα is the Riesz potential of order α∈(0,N) and the unknown parameter λ appears as a Lagrange multiplier. In a mass supercritical setting on F, we prove the existence of a couple (uaG,λaG)∈H1(RN)×R− of saddle solutions for any a>0 and for given finite Coxeter group G with its rank k≤N. Our method is to combine the concentration compactness principle with a minimax procedure in the saddle type symmetric subspace, which gives a variational framework of constructing normalized saddle solutions for the Choquard equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI