材料科学
电介质
电容器
储能
陶瓷
极化(电化学)
晶界
粒度
热稳定性
脉冲功率
能量密度
分析化学(期刊)
光电子学
复合材料
电压
工程物理
电气工程
热力学
功率(物理)
化学工程
微观结构
化学
物理
物理化学
工程类
色谱法
作者
Wenjun Cao,Renju Lin,Xu Hou,Li Li,Feng Li,Defu Bo,Binghui Ge,Dongsheng Song,Jian Zhang,Zhenxiang Cheng,Chunchang Wang
标识
DOI:10.1002/adfm.202301027
摘要
Abstract Dielectric capacitors with high power densities are crucial for pulsed electronic devices and clean energy technologies. However, their breakdown strengths ( E b ) strongly limit their power densities. Herein, by modifying the interfacial polarization by adjusting the difference in activation energies (Δϕ) between the grain and grain boundary phases, the significant enhancement of E b in the (1‐ x )(0.94Na 0.5 Bi 0.5 TiO 3 ‐0.06BaTiO 3 )‐ x Ca 0.7 La 0.2 TiO 3 (NBT‐BT‐ x CLT, x = 0, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.43) ceramics is achieved. The results indicate that adding CLT introduces a super‐paraelectric state, refines grain size, and, most importantly, decreases the Δϕ value. When Δϕ is tuned close to zero in the specific NBT‐BT‐0.38CLT sample, a significant boost in E b value of 64 kV mm −1 is obtained. As a result, the recoverable energy storage density of the ceramics reaches an unprecedented giant value of 15.1 J cm −3 together with a high efficiency of 82.4%, as well as ultrafast discharge rate of 32 ns, and high thermal and frequency stability. The results demonstrate that interfacial polarization engineering holds huge promise for the development of dielectrics with high‐energy‐storage performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI