质谱法
阳极
电解质
电镀(地质)
石墨
化学
电化学
化学工程
碳酸盐
分析化学(期刊)
无机化学
材料科学
电极
色谱法
有机化学
物理化学
工程类
地质学
地球物理学
作者
Haitang Zhang,Jianken Chen,Guifan Zeng,Xiaohong Wu,Junhao Wang,Jiyuan Xue,Yuhao Hong,Yu Qiao,Shi‐Gang Sun
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-04-07
卷期号:23 (8): 3565-3572
被引量:16
标识
DOI:10.1021/acs.nanolett.3c00729
摘要
The prominent problem with graphite anodes in practical applications is the detrimental Li plating, resulting in rapid capacity fade and safety hazards. Herein, secondary gas evolution behavior during the Li-plating process was monitored by online electrochemical mass spectrometry (OEMS), and the onset of local microscale Li plating on the graphite anode was precisely/explicitly detected in situ/operando for early safety warnings. The distribution of irreversible capacity loss (e.g., primary and secondary solid electrolyte interface (SEI), dead Li, etc.) under Li-plating conditions was accurately quantified by titration mass spectroscopy (TMS). Based on OEMS/TMS results, the effect of typical VC/FEC additives was recognized at the level of Li plating. The nature of vinylene carbonate (VC)/fluoroethylene carbonate (FEC) additive modification is to enhance the elasticity of primary and secondary SEI by adjusting organic carbonates and/or LiF components, leading to less "dead Li" capacity loss. Though VC-containing electrolyte greatly suppresses the H2/C2H4 (flammable/explosive) evolution during Li plating, more H2 is released from the reductive decomposition of FEC.
科研通智能强力驱动
Strongly Powered by AbleSci AI