Few-shot learning with transformers via graph embeddings for molecular property prediction

计算机科学 分子图 机器学习 财产(哲学) 图形 人工智能 训练集 人工神经网络 数据挖掘 理论计算机科学 认识论 哲学
作者
Luis H.M. Torres,Bernardete Ribeiro,Joel P. Arrais
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:225: 120005-120005 被引量:15
标识
DOI:10.1016/j.eswa.2023.120005
摘要

Molecular property prediction is an essential task in drug discovery. Recently, deep neural networks have accelerated the discovery of compounds with improved molecular profiles for effective drug development. In particular, graph neural networks (GNNs) have played a pivotal role in identifying promising drug candidates with desirable molecular properties. However, it is common for only a few molecules to share the same set of properties, which presents a low-data problem unanswered by regular machine learning (ML) approaches. Transformer networks have also emerged as a promising solution to model the long-range dependence in molecular embeddings and achieve encouraging results across a wide range of molecular property prediction tasks. Nonetheless, these methods still require a large number of data points per task to achieve acceptable performance. In this study, we propose a few-shot GNN-Transformer architecture, FS-GNNTR to face the challenge of low-data in molecular property prediction. The proposed model accepts molecules in the form of molecular graphs to model the local spatial context of molecular graph embeddings while preserving the global information of deep representations. Furthermore, we introduce a two-module meta-learning framework to iteratively update model parameters across few-shot tasks and predict new molecular properties with limited available data. Finally, we conduct multiple experiments on small-sized biological datasets for molecular property prediction, Tox21 and SIDER, and our results demonstrate the superior performance of FS-GNNTR compared to simpler graph-based baselines. The code and data underlying this article are available in the repository, https://github.com/ltorres97/FS-GNNTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MHX完成签到,获得积分10
刚刚
1秒前
Doubleyang1完成签到,获得积分20
2秒前
i2z关注了科研通微信公众号
2秒前
2秒前
研友_VZG7GZ应助碧蓝的觅露采纳,获得10
2秒前
ding应助明理的凌旋采纳,获得10
3秒前
4秒前
Ainhoa完成签到,获得积分10
4秒前
独孤幻月96应助甜甜亦丝采纳,获得10
4秒前
哆啦A涵发布了新的文献求助10
5秒前
6秒前
7秒前
老实用户完成签到 ,获得积分10
8秒前
Sakura完成签到 ,获得积分10
8秒前
hui发布了新的文献求助10
8秒前
满意的迎南完成签到 ,获得积分10
9秒前
苗条小霸王完成签到,获得积分10
9秒前
康康发布了新的文献求助10
9秒前
10秒前
粗犷的世平完成签到,获得积分10
11秒前
小坨坨发布了新的文献求助10
11秒前
完美世界应助12采纳,获得10
12秒前
个性的紫菜应助小黄豆采纳,获得70
12秒前
雨寒发布了新的文献求助50
13秒前
威武的水之完成签到,获得积分10
13秒前
沉潜完成签到,获得积分10
14秒前
demo完成签到,获得积分10
14秒前
一包辣条发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
17秒前
pomelost完成签到,获得积分10
17秒前
炙热ding完成签到,获得积分10
19秒前
19秒前
Hello应助康康采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403