Few-shot learning with transformers via graph embeddings for molecular property prediction

计算机科学 分子图 机器学习 财产(哲学) 图形 人工智能 训练集 人工神经网络 数据挖掘 理论计算机科学 哲学 认识论
作者
Luis H.M. Torres,Bernardete Ribeiro,Joel P. Arrais
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120005-120005 被引量:26
标识
DOI:10.1016/j.eswa.2023.120005
摘要

Molecular property prediction is an essential task in drug discovery. Recently, deep neural networks have accelerated the discovery of compounds with improved molecular profiles for effective drug development. In particular, graph neural networks (GNNs) have played a pivotal role in identifying promising drug candidates with desirable molecular properties. However, it is common for only a few molecules to share the same set of properties, which presents a low-data problem unanswered by regular machine learning (ML) approaches. Transformer networks have also emerged as a promising solution to model the long-range dependence in molecular embeddings and achieve encouraging results across a wide range of molecular property prediction tasks. Nonetheless, these methods still require a large number of data points per task to achieve acceptable performance. In this study, we propose a few-shot GNN-Transformer architecture, FS-GNNTR to face the challenge of low-data in molecular property prediction. The proposed model accepts molecules in the form of molecular graphs to model the local spatial context of molecular graph embeddings while preserving the global information of deep representations. Furthermore, we introduce a two-module meta-learning framework to iteratively update model parameters across few-shot tasks and predict new molecular properties with limited available data. Finally, we conduct multiple experiments on small-sized biological datasets for molecular property prediction, Tox21 and SIDER, and our results demonstrate the superior performance of FS-GNNTR compared to simpler graph-based baselines. The code and data underlying this article are available in the repository, https://github.com/ltorres97/FS-GNNTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助池新辰采纳,获得10
刚刚
刚刚
Owen应助小菜鸡采纳,获得10
1秒前
义气天真完成签到,获得积分10
1秒前
曾经念寒发布了新的文献求助10
1秒前
2秒前
3秒前
梦C2发布了新的文献求助10
3秒前
4秒前
4秒前
左左发布了新的文献求助10
5秒前
excellent_shit完成签到,获得积分10
5秒前
李亚宁发布了新的文献求助10
6秒前
搜集达人应助满意沛槐采纳,获得10
6秒前
he发布了新的文献求助10
8秒前
8秒前
8秒前
11秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
隐形曼青应助shfsuf采纳,获得10
13秒前
池新辰发布了新的文献求助10
13秒前
ly发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
DY发布了新的文献求助10
15秒前
Shawn发布了新的文献求助10
15秒前
孙文远发布了新的文献求助10
16秒前
17秒前
xinyuli发布了新的文献求助30
18秒前
gyusbjshaxb发布了新的文献求助10
18秒前
谢金佼完成签到 ,获得积分10
19秒前
19秒前
健忘洋葱完成签到 ,获得积分10
19秒前
19秒前
池新辰完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526816
求助须知:如何正确求助?哪些是违规求助? 4616788
关于积分的说明 14555989
捐赠科研通 4555331
什么是DOI,文献DOI怎么找? 2496289
邀请新用户注册赠送积分活动 1476623
关于科研通互助平台的介绍 1448126