Few-shot learning with transformers via graph embeddings for molecular property prediction

计算机科学 分子图 机器学习 财产(哲学) 图形 人工智能 训练集 人工神经网络 数据挖掘 理论计算机科学 哲学 认识论
作者
Luis H.M. Torres,Bernardete Ribeiro,Joel P. Arrais
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120005-120005 被引量:20
标识
DOI:10.1016/j.eswa.2023.120005
摘要

Molecular property prediction is an essential task in drug discovery. Recently, deep neural networks have accelerated the discovery of compounds with improved molecular profiles for effective drug development. In particular, graph neural networks (GNNs) have played a pivotal role in identifying promising drug candidates with desirable molecular properties. However, it is common for only a few molecules to share the same set of properties, which presents a low-data problem unanswered by regular machine learning (ML) approaches. Transformer networks have also emerged as a promising solution to model the long-range dependence in molecular embeddings and achieve encouraging results across a wide range of molecular property prediction tasks. Nonetheless, these methods still require a large number of data points per task to achieve acceptable performance. In this study, we propose a few-shot GNN-Transformer architecture, FS-GNNTR to face the challenge of low-data in molecular property prediction. The proposed model accepts molecules in the form of molecular graphs to model the local spatial context of molecular graph embeddings while preserving the global information of deep representations. Furthermore, we introduce a two-module meta-learning framework to iteratively update model parameters across few-shot tasks and predict new molecular properties with limited available data. Finally, we conduct multiple experiments on small-sized biological datasets for molecular property prediction, Tox21 and SIDER, and our results demonstrate the superior performance of FS-GNNTR compared to simpler graph-based baselines. The code and data underlying this article are available in the repository, https://github.com/ltorres97/FS-GNNTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SAODEN完成签到,获得积分10
刚刚
栾栾栾完成签到,获得积分10
刚刚
小灰灰完成签到,获得积分0
刚刚
WELXCNK完成签到,获得积分0
刚刚
1秒前
脑洞疼应助Aipoi采纳,获得10
2秒前
落雪慕卿颜完成签到,获得积分10
3秒前
哈哈哈哈完成签到,获得积分10
3秒前
英吉利25发布了新的文献求助10
5秒前
研友_Z7mYwL完成签到,获得积分0
6秒前
阜睿发布了新的文献求助10
6秒前
在水一方应助邵翎365采纳,获得10
7秒前
HY完成签到,获得积分10
8秒前
长江完成签到,获得积分10
8秒前
Zengyuan完成签到,获得积分10
9秒前
风中冰香应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
那时花开应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
lq完成签到,获得积分10
11秒前
12秒前
风中冰香应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得30
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
chrisio应助科研通管家采纳,获得10
12秒前
rabpig应助科研通管家采纳,获得10
12秒前
Sun_1完成签到,获得积分10
12秒前
rabpig应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294370
求助须知:如何正确求助?哪些是违规求助? 4444225
关于积分的说明 13832582
捐赠科研通 4328291
什么是DOI,文献DOI怎么找? 2376049
邀请新用户注册赠送积分活动 1371380
关于科研通互助平台的介绍 1336554