Few-shot learning with transformers via graph embeddings for molecular property prediction

计算机科学 分子图 机器学习 财产(哲学) 图形 人工智能 训练集 人工神经网络 数据挖掘 理论计算机科学 哲学 认识论
作者
Luis H.M. Torres,Bernardete Ribeiro,Joel P. Arrais
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120005-120005 被引量:26
标识
DOI:10.1016/j.eswa.2023.120005
摘要

Molecular property prediction is an essential task in drug discovery. Recently, deep neural networks have accelerated the discovery of compounds with improved molecular profiles for effective drug development. In particular, graph neural networks (GNNs) have played a pivotal role in identifying promising drug candidates with desirable molecular properties. However, it is common for only a few molecules to share the same set of properties, which presents a low-data problem unanswered by regular machine learning (ML) approaches. Transformer networks have also emerged as a promising solution to model the long-range dependence in molecular embeddings and achieve encouraging results across a wide range of molecular property prediction tasks. Nonetheless, these methods still require a large number of data points per task to achieve acceptable performance. In this study, we propose a few-shot GNN-Transformer architecture, FS-GNNTR to face the challenge of low-data in molecular property prediction. The proposed model accepts molecules in the form of molecular graphs to model the local spatial context of molecular graph embeddings while preserving the global information of deep representations. Furthermore, we introduce a two-module meta-learning framework to iteratively update model parameters across few-shot tasks and predict new molecular properties with limited available data. Finally, we conduct multiple experiments on small-sized biological datasets for molecular property prediction, Tox21 and SIDER, and our results demonstrate the superior performance of FS-GNNTR compared to simpler graph-based baselines. The code and data underlying this article are available in the repository, https://github.com/ltorres97/FS-GNNTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脂肪肝完成签到,获得积分10
刚刚
1秒前
史淼荷发布了新的文献求助50
3秒前
4秒前
帅哥完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
小山隹完成签到,获得积分10
8秒前
pfliu完成签到 ,获得积分10
8秒前
深情的幻桃完成签到,获得积分10
8秒前
顾矜应助ZS采纳,获得10
9秒前
xxfsx应助风清扬采纳,获得100
9秒前
10秒前
帅哥发布了新的文献求助10
11秒前
chaser完成签到,获得积分10
12秒前
所所应助科研阿白采纳,获得10
14秒前
14秒前
充电宝应助帅哥采纳,获得10
17秒前
潜山耕之完成签到,获得积分10
17秒前
哒哒发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
乐乐应助美好斓采纳,获得10
18秒前
19秒前
19秒前
栗子完成签到,获得积分10
21秒前
季子超发布了新的文献求助10
21秒前
21秒前
momo发布了新的文献求助10
22秒前
怡然的怜烟应助skamandrous采纳,获得30
22秒前
ZS发布了新的文献求助10
23秒前
23秒前
小河流水完成签到 ,获得积分10
24秒前
MYW完成签到,获得积分10
24秒前
aurora应助加菲丰丰采纳,获得10
25秒前
壹号发布了新的文献求助10
25秒前
郎帅发布了新的文献求助10
25秒前
852应助好学采纳,获得10
27秒前
华仔应助YUAN采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425506
求助须知:如何正确求助?哪些是违规求助? 4539540
关于积分的说明 14168368
捐赠科研通 4457101
什么是DOI,文献DOI怎么找? 2444423
邀请新用户注册赠送积分活动 1435344
关于科研通互助平台的介绍 1412740