Few-shot learning with transformers via graph embeddings for molecular property prediction

计算机科学 分子图 机器学习 财产(哲学) 图形 人工智能 训练集 人工神经网络 数据挖掘 理论计算机科学 认识论 哲学
作者
Luis H.M. Torres,Bernardete Ribeiro,Joel P. Arrais
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120005-120005 被引量:26
标识
DOI:10.1016/j.eswa.2023.120005
摘要

Molecular property prediction is an essential task in drug discovery. Recently, deep neural networks have accelerated the discovery of compounds with improved molecular profiles for effective drug development. In particular, graph neural networks (GNNs) have played a pivotal role in identifying promising drug candidates with desirable molecular properties. However, it is common for only a few molecules to share the same set of properties, which presents a low-data problem unanswered by regular machine learning (ML) approaches. Transformer networks have also emerged as a promising solution to model the long-range dependence in molecular embeddings and achieve encouraging results across a wide range of molecular property prediction tasks. Nonetheless, these methods still require a large number of data points per task to achieve acceptable performance. In this study, we propose a few-shot GNN-Transformer architecture, FS-GNNTR to face the challenge of low-data in molecular property prediction. The proposed model accepts molecules in the form of molecular graphs to model the local spatial context of molecular graph embeddings while preserving the global information of deep representations. Furthermore, we introduce a two-module meta-learning framework to iteratively update model parameters across few-shot tasks and predict new molecular properties with limited available data. Finally, we conduct multiple experiments on small-sized biological datasets for molecular property prediction, Tox21 and SIDER, and our results demonstrate the superior performance of FS-GNNTR compared to simpler graph-based baselines. The code and data underlying this article are available in the repository, https://github.com/ltorres97/FS-GNNTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
364739814完成签到,获得积分10
刚刚
彭于晏应助lilala采纳,获得10
1秒前
所所应助隐形的葵阴采纳,获得10
1秒前
1秒前
zzcherished发布了新的文献求助10
1秒前
feng完成签到,获得积分10
2秒前
Tender发布了新的文献求助30
4秒前
Judy完成签到,获得积分10
5秒前
6秒前
wang发布了新的文献求助10
6秒前
阿庆完成签到,获得积分10
7秒前
iShine完成签到,获得积分10
7秒前
章耀楠发布了新的文献求助10
7秒前
8秒前
8秒前
安徒生完成签到,获得积分10
8秒前
崔大胖完成签到,获得积分10
8秒前
9秒前
万能图书馆应助Spine Lin采纳,获得10
10秒前
WB87应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
愿好应助科研通管家采纳,获得10
11秒前
cpy1004应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
11秒前
kentonchow应助科研通管家采纳,获得50
11秒前
11秒前
kentonchow应助科研通管家采纳,获得30
11秒前
小马甲应助科研通管家采纳,获得30
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
WB87应助科研通管家采纳,获得10
12秒前
cpy1004应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得30
12秒前
忧郁凌波发布了新的文献求助10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419605
求助须知:如何正确求助?哪些是违规求助? 4534853
关于积分的说明 14147089
捐赠科研通 4451498
什么是DOI,文献DOI怎么找? 2441760
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410617