Few-shot learning with transformers via graph embeddings for molecular property prediction

计算机科学 分子图 机器学习 财产(哲学) 图形 人工智能 训练集 人工神经网络 数据挖掘 理论计算机科学 认识论 哲学
作者
Luis H.M. Torres,Bernardete Ribeiro,Joel P. Arrais
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120005-120005 被引量:26
标识
DOI:10.1016/j.eswa.2023.120005
摘要

Molecular property prediction is an essential task in drug discovery. Recently, deep neural networks have accelerated the discovery of compounds with improved molecular profiles for effective drug development. In particular, graph neural networks (GNNs) have played a pivotal role in identifying promising drug candidates with desirable molecular properties. However, it is common for only a few molecules to share the same set of properties, which presents a low-data problem unanswered by regular machine learning (ML) approaches. Transformer networks have also emerged as a promising solution to model the long-range dependence in molecular embeddings and achieve encouraging results across a wide range of molecular property prediction tasks. Nonetheless, these methods still require a large number of data points per task to achieve acceptable performance. In this study, we propose a few-shot GNN-Transformer architecture, FS-GNNTR to face the challenge of low-data in molecular property prediction. The proposed model accepts molecules in the form of molecular graphs to model the local spatial context of molecular graph embeddings while preserving the global information of deep representations. Furthermore, we introduce a two-module meta-learning framework to iteratively update model parameters across few-shot tasks and predict new molecular properties with limited available data. Finally, we conduct multiple experiments on small-sized biological datasets for molecular property prediction, Tox21 and SIDER, and our results demonstrate the superior performance of FS-GNNTR compared to simpler graph-based baselines. The code and data underlying this article are available in the repository, https://github.com/ltorres97/FS-GNNTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z729Mn发布了新的文献求助10
1秒前
独特跳跳糖完成签到 ,获得积分10
2秒前
2秒前
hyl-tcm完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
LL发布了新的文献求助10
5秒前
xavier发布了新的文献求助10
5秒前
5秒前
孙意冉发布了新的文献求助10
6秒前
7秒前
hd发布了新的文献求助10
8秒前
9秒前
kakainho完成签到,获得积分10
9秒前
9秒前
坚定寒松完成签到 ,获得积分10
10秒前
10秒前
沈迎南发布了新的文献求助10
10秒前
甜甜寄凡发布了新的文献求助10
11秒前
Dr.feng完成签到,获得积分10
12秒前
jihenyouai0213完成签到,获得积分10
12秒前
可靠橘子发布了新的文献求助10
13秒前
等待的mango应助群众采纳,获得10
14秒前
lijunlhc完成签到,获得积分10
14秒前
冷酷的冰夏完成签到,获得积分10
14秒前
xxfsx应助孤独的万言采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
凯凯发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
浮游应助浮浮世世采纳,获得20
19秒前
19秒前
可靠橘子完成签到,获得积分10
19秒前
19秒前
21秒前
英俊的铭应助落花生采纳,获得10
22秒前
深情安青应助傲娇林采纳,获得10
22秒前
Author发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474