有机发光二极管
材料科学
光电子学
量子效率
共发射极
单重态
接受者
激发态
共振(粒子物理)
激发
原子物理学
纳米技术
物理
图层(电子)
凝聚态物理
量子力学
作者
Feng Huang,Xiao‐Chun Fan,Ying‐Chun Cheng,Yue Xie,Shulin Luo,Tao Zhang,Hao Wu,Xin Xiong,Jia Yu,Dandan Zhang,Xiankai Chen,Kai Wang,Xiaohong Zhang
标识
DOI:10.1002/adom.202202950
摘要
Abstract Multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters are very promising in the high‐resolution and high‐efficiency displays, due to their narrow and highly efficient optical emissions. Early MR‐TADF cores that show only short‐range charge‐transfer (CT) electronic excitations hardly afford ideal performances (e.g., show low efficiencies) in organic light‐emitting diodes (OLEDs). This work thus designs and synthesizes two MR‐TADF emitters (TCzBN‐BP and TCzBN‐FP), where the same MR core TCzBN is chemically modified by the acceptor fragments benzophenone/9‐fluorenone (BP/FP) to incorporate long‐range CT excitations in the two molecules. OLEDs exploiting TCzBN‐BP as emitter, in which short‐range CT excitation is dominant in the first singlet (S 1 ) excited state, achieve a maximum external quantum efficiency (EQE) of 35.6% and a narrow emission bandwidth of 35 nm. In contrast, OLEDs exploiting TCzBN‐FP with an overloaded long‐range CT excitation in the S 1 state exhibit a maximum EQE of 27.2% and a broadened emission bandwidth of 56 nm. This work not only shows the importance of careful management of long‐ and short‐range CT excitations, but also provides a new insight into the structure–property relationship in the MR‐TADF emitters, which thus promotes the design of more novel MR‐TADF emitters with high efficiencies and high color purity.
科研通智能强力驱动
Strongly Powered by AbleSci AI