Computational approach for plasma process optimization combined with deep learning model

过程(计算) 一致性(知识库) 粒子群优化 等离子体 计算机科学 半导体器件制造 等离子体刻蚀 进程窗口 算法 人工智能 材料科学 蚀刻(微加工) 纳米技术 物理 图层(电子) 薄脆饼 操作系统 量子力学
作者
Jung-Min Ko,Jinkyu Bae,Minho Park,Younghyun Jo,Hyunjae Lee,Kyung-Hyun Kim,Suyoung Yoo,Sang Ki Nam,Dougyong Sung,Byungjo Kim
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:56 (34): 344001-344001 被引量:6
标识
DOI:10.1088/1361-6463/acd1fd
摘要

Abstract As semiconductor device structures become more complex and sophisticated, the formation of finer and deeper patterns is required. To achieve a higher yield for mass production as the number of process steps increases and process variables become more diverse, process optimization requires extensive engineering effort to meet the target process requirements, such as uniformity. In this study, we propose an efficient process design framework that can efficiently search for optimal process conditions by combining deep learning (DL) with plasma simulations. To establish the DL model, a dataset was created using a two-dimensional (2D) hybrid plasma equipment model code for an argon inductively coupled plasma system under a given process window. The DL model was implemented and trained using the dataset to learn the functional relationship between the process conditions and their consequential plasma states, which was characterized by 2D field data. The performance of the DL model was confirmed by comparison of the output with the ground truth, validating its high consistency. Moreover, the DL results provide a reasonable interpretation of the fundamental features of plasmas and show a good correlation with the experimental observations in terms of the measured etch rate characteristics. Using the designed DL, an extensive exploration of process variables was conducted to find the optimal processing condition using the multi-objective particle swarm optimization algorithm for the given objective functions of high etch rate and its uniform distribution. The obtained optimal candidates were evaluated and compared to other process conditions experimentally, demonstrating a fairly enhanced etch rate and uniformity at the same time. The proposed computational framework substantially reduced trial-and-error repetitions in tailoring process conditions from a practical perspective. Moreover, it will serve as an effective tool to narrow the processing window, particularly in the early stages of development for advanced equipment and processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HM完成签到,获得积分10
刚刚
Jasper应助泯珉采纳,获得10
2秒前
2秒前
伍六七关注了科研通微信公众号
2秒前
2秒前
3秒前
科研通AI5应助as112358采纳,获得10
3秒前
3秒前
4秒前
戏谑完成签到,获得积分10
5秒前
5秒前
6秒前
小蘑菇应助闪闪凡波采纳,获得10
6秒前
琪琪完成签到,获得积分10
7秒前
英俊的铭应助Bonnie采纳,获得10
7秒前
夏鹿发布了新的文献求助10
7秒前
科研通AI5应助鸡蛋采纳,获得10
7秒前
安慧容发布了新的文献求助10
8秒前
麦饭完成签到,获得积分10
8秒前
今后应助H-kevin.采纳,获得10
8秒前
8秒前
8秒前
酷波er应助一一采纳,获得10
10秒前
10秒前
懦弱的智宸完成签到,获得积分20
11秒前
NexusExplorer应助薄荷采纳,获得10
12秒前
zm发布了新的文献求助10
12秒前
12秒前
lulala完成签到 ,获得积分10
12秒前
佐佐的2xL完成签到,获得积分10
15秒前
风轻云淡发布了新的文献求助20
15秒前
灰灰完成签到,获得积分20
16秒前
lulala关注了科研通微信公众号
16秒前
Leung应助时尚的穆采纳,获得10
16秒前
16秒前
尔蓝红颜发布了新的文献求助10
17秒前
拼搏的向露完成签到,获得积分10
17秒前
宋佳顺发布了新的文献求助20
17秒前
19秒前
David完成签到,获得积分10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756377
求助须知:如何正确求助?哪些是违规求助? 3299679
关于积分的说明 10111098
捐赠科研通 3014229
什么是DOI,文献DOI怎么找? 1655421
邀请新用户注册赠送积分活动 789853
科研通“疑难数据库(出版商)”最低求助积分说明 753454