CT radiomics features as a diagnostic tool for classifying basal ganglia infarction onset time

接收机工作特性 队列 溶栓 医学 逻辑回归 特征选择 人工智能 无线电技术 计算机科学 机器学习 模式识别(心理学) 病理 内科学 心肌梗塞
作者
Xiang Yao,Ling Mao,Shunli Lv,Zhenghong Ren,Wentao Li,Ke Ren
出处
期刊:Journal of the Neurological Sciences [Elsevier]
卷期号:412: 116730-116730 被引量:13
标识
DOI:10.1016/j.jns.2020.116730
摘要

Objective This study was aimed to discuss the application of radiomics using CT analysis in basal ganglia infarction (BGI) for determining the time since stroke onset (TSS) which could provide critical information to clinicians in deciding stroke treatment options such as thrombolysis. Methods This study involved 316 patients with BGI (237 in the training cohort and 79 in the independent validation cohort). Region of interest segmentation and feature extraction was done by ITK-SNAP software. We used the existing medical history to binarize the TSS into two categories: positive (< 4.5 h) and negative (≥ 4.5 h). The key radiomic signature features were retrieved by the least absolute shrinkage and selection operator multiple logistic regression model. Receiver operating characteristic curve and AUC analysis were used to evaluate the performance of the radiomic signature in both the training and validation cohorts. Results 295 features were extracted from a manually outlined infarction region. Five features were selected to construct the radiomic signature for TSS classification purposes. The performance of the radiomic signature to distinguish between positive and negative in the training cohort was good, with an AUC of 0.982, a sensitivity of 0.929, and a specificity of 0.959. In the validation cohort, the radiomic signature showed an AUC of 0.974, a sensitivity of 0.951, and a specificity of 0.961. Conclusion A unique radiomic signature was constructed for use as a diagnostic tool for discriminating the TSS in BGI and may guide decisions to use thrombolysis in patients with unknown times of BGI onset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
刚刚
wxwx完成签到,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
刘财财发布了新的文献求助10
1秒前
无花果应助科研通管家采纳,获得30
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得30
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得50
1秒前
今后应助邱佳佳采纳,获得10
1秒前
1秒前
彭于晏应助会飞的野马采纳,获得10
2秒前
2秒前
一头大L发布了新的文献求助10
2秒前
3秒前
kyJYbs完成签到,获得积分10
3秒前
3秒前
RRROP发布了新的文献求助10
3秒前
研友_8DAv0L发布了新的文献求助10
4秒前
4秒前
4秒前
jiangjiang发布了新的文献求助10
5秒前
明天就能完成签到,获得积分10
6秒前
7秒前
研友_VZG7GZ应助扎心采纳,获得10
7秒前
TTT发布了新的文献求助10
8秒前
绵马紫萁完成签到,获得积分10
9秒前
9秒前
su发布了新的文献求助10
9秒前
9秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128679
求助须知:如何正确求助?哪些是违规求助? 2779501
关于积分的说明 7743462
捐赠科研通 2434802
什么是DOI,文献DOI怎么找? 1293635
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514