X-ray CT and image analysis methodology for local roughness characterization in cooling channels made by metal additive manufacturing

材料科学 表面光洁度 表征(材料科学) 表面粗糙度 纹理(宇宙学) 标准差 频道(广播) 生物系统 机械工程 工程制图 复合材料 计算机科学 人工智能 图像(数学) 纳米技术 数学 统计 计算机网络 工程类 生物
作者
Christopher G. Klingaa,Thomas Dahmen,Sina Baier,Sankhya Mohanty,Jesper Henri Hattel
出处
期刊:Additive manufacturing [Elsevier]
卷期号:32: 101032-101032 被引量:44
标识
DOI:10.1016/j.addma.2019.101032
摘要

The increasingly complex shapes and geometries being produced using additive manufacturing necessitate new characterization techniques that can address the corresponding challenges. Standard techniques for roughness and texture measurements are inept at characterizing the internal surfaces in freeform geometries. Hence, this work presents a new methodology for extracting and quantitatively characterizing the roughness on internal surfaces. The methodology links X-ray CT with complete roughness characterization of channels manufactured by laser powder bed fusion through a novel image analysis approach of X-ray CT data. Global and local orientation parameters are defined to enable a full 360° description of the roughness inside additively manufactured channels. X-ray CT data is analyzed to generate 3D deviation data – based on which multiple local roughness profiles are extracted and analyzed in accordance with the ISO 4287:1997 standard. To demonstrate the proposed methodology, seven circular 17-4 PH stainless steel channels produced at different inclinations and with a diameter of 2 mm are investigated as a case study. Qualitative and quantitative characterization of the roughness is obtained through the use of the proposed methodology. A strong dependence of the local roughness on the corresponding α and β orientations is found. A simple regression model is subsequently extracted from the calculated roughness values and allows prediction of Ra-values in the channels for the ranges between 0° ≤ α ≤ 90° and 80° ≤ β ≤ 280°. In addition to decreasing the effective hydraulic diameter of a cooling channel, the surface roughness also influences the local Nusselt number, which is quantified using the extracted regression model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助mm采纳,获得10
刚刚
1秒前
荒年完成签到,获得积分10
1秒前
魁梧的曼凡完成签到,获得积分10
1秒前
2秒前
研一小刘发布了新的文献求助10
2秒前
陈莹完成签到,获得积分20
2秒前
qi发布了新的文献求助30
3秒前
3秒前
Wyan完成签到,获得积分20
3秒前
我是老大应助通~采纳,获得10
4秒前
Jenny应助淡定紫菱采纳,获得10
4秒前
逆流的鱼完成签到 ,获得积分10
5秒前
5秒前
liuqian完成签到,获得积分10
6秒前
Hou完成签到 ,获得积分10
6秒前
反杀闰土的猹完成签到 ,获得积分20
6秒前
所所应助cc采纳,获得10
7秒前
邵裘完成签到,获得积分10
7秒前
丘比特应助yin采纳,获得10
7秒前
8秒前
8秒前
8秒前
希望天下0贩的0应助sss采纳,获得20
8秒前
拼搏向前发布了新的文献求助10
8秒前
紫罗兰花海完成签到 ,获得积分10
9秒前
琪琪完成签到,获得积分10
10秒前
10秒前
爆米花应助高兴藏花采纳,获得10
10秒前
orixero应助Rrr采纳,获得10
10秒前
11秒前
张今天也要做科研呀完成签到,获得积分10
11秒前
humorlife完成签到,获得积分10
11秒前
打打应助给我找采纳,获得10
12秒前
酷波er应助谦让的含海采纳,获得10
12秒前
12秒前
shrike发布了新的文献求助10
12秒前
心灵美半邪完成签到 ,获得积分10
14秒前
wanci应助星晴遇见花海采纳,获得10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794